18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia

Lisanne V van Dijk, Walter Noordzij, Charlotte L Brouwer, Ronald Boellaard, Johannes G M Burgerhof, Johannes A Langendijk, Nanna M Sijtsema, Roel J H M Steenbakkers

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND AND PURPOSE: Current prediction of radiation-induced xerostomia 12months after radiotherapy (Xer12m) is based on mean parotid gland dose and baseline xerostomia (Xerbaseline) scores. The hypothesis of this study was that prediction of Xer12m is improved with patient-specific characteristics extracted from 18F-FDG PET images, quantified in PET image biomarkers (PET-IBMs).

PATIENTS AND METHODS: Intensity and textural PET-IBMs of the parotid gland were collected from pre-treatment 18F-FDG PET images of 161 head and neck cancer patients. Patient-rated toxicity was prospectively collected. Multivariable logistic regression models resulting from step-wise forward selection and Lasso regularisation were internally validated by bootstrapping. The reference model with parotid gland dose and Xerbaseline was compared with the resulting PET-IBM models.

RESULTS: High values of the intensity PET-IBM (90th percentile (P90)) and textural PET-IBM (Long Run High Grey-level Emphasis 3 (LRHG3E)) were significantly associated with lower risk of Xer12m. Both PET-IBMs significantly added in the prediction of Xer12m to the reference model. The AUC increased from 0.73 (0.65-0.81) (reference model) to 0.77 (0.70-0.84) (P90) and 0.77 (0.69-0.84) (LRHG3E).

CONCLUSION: Prediction of Xer12m was significantly improved with pre-treatment PET-IBMs, indicating that high metabolic parotid gland activity is associated with lower risk of developing late xerostomia. This study highlights the potential of incorporating patient-specific PET-derived functional characteristics into NTCP model development.

Original languageEnglish
Pages (from-to)89-95
JournalRadiotherapy and Oncology
Volume126
Issue number1
DOIs
Publication statusPublished - Jan 2018

Cite this

van Dijk, L. V., Noordzij, W., Brouwer, C. L., Boellaard, R., Burgerhof, J. G. M., Langendijk, J. A., ... Steenbakkers, R. J. H. M. (2018). 18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia. Radiotherapy and Oncology, 126(1), 89-95. https://doi.org/10.1016/j.radonc.2017.08.024
van Dijk, Lisanne V ; Noordzij, Walter ; Brouwer, Charlotte L ; Boellaard, Ronald ; Burgerhof, Johannes G M ; Langendijk, Johannes A ; Sijtsema, Nanna M ; Steenbakkers, Roel J H M. / 18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia. In: Radiotherapy and Oncology. 2018 ; Vol. 126, No. 1. pp. 89-95.
@article{825eab17687f4db4a870965c89af8473,
title = "18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia",
abstract = "BACKGROUND AND PURPOSE: Current prediction of radiation-induced xerostomia 12months after radiotherapy (Xer12m) is based on mean parotid gland dose and baseline xerostomia (Xerbaseline) scores. The hypothesis of this study was that prediction of Xer12m is improved with patient-specific characteristics extracted from 18F-FDG PET images, quantified in PET image biomarkers (PET-IBMs).PATIENTS AND METHODS: Intensity and textural PET-IBMs of the parotid gland were collected from pre-treatment 18F-FDG PET images of 161 head and neck cancer patients. Patient-rated toxicity was prospectively collected. Multivariable logistic regression models resulting from step-wise forward selection and Lasso regularisation were internally validated by bootstrapping. The reference model with parotid gland dose and Xerbaseline was compared with the resulting PET-IBM models.RESULTS: High values of the intensity PET-IBM (90th percentile (P90)) and textural PET-IBM (Long Run High Grey-level Emphasis 3 (LRHG3E)) were significantly associated with lower risk of Xer12m. Both PET-IBMs significantly added in the prediction of Xer12m to the reference model. The AUC increased from 0.73 (0.65-0.81) (reference model) to 0.77 (0.70-0.84) (P90) and 0.77 (0.69-0.84) (LRHG3E).CONCLUSION: Prediction of Xer12m was significantly improved with pre-treatment PET-IBMs, indicating that high metabolic parotid gland activity is associated with lower risk of developing late xerostomia. This study highlights the potential of incorporating patient-specific PET-derived functional characteristics into NTCP model development.",
keywords = "Journal Article",
author = "{van Dijk}, {Lisanne V} and Walter Noordzij and Brouwer, {Charlotte L} and Ronald Boellaard and Burgerhof, {Johannes G M} and Langendijk, {Johannes A} and Sijtsema, {Nanna M} and Steenbakkers, {Roel J H M}",
note = "Copyright {\circledC} 2017 The Author(s). Published by Elsevier B.V. All rights reserved.",
year = "2018",
month = "1",
doi = "10.1016/j.radonc.2017.08.024",
language = "English",
volume = "126",
pages = "89--95",
journal = "Radiotherapy and Oncology",
issn = "0167-8140",
publisher = "Elsevier Ireland Ltd",
number = "1",

}

van Dijk, LV, Noordzij, W, Brouwer, CL, Boellaard, R, Burgerhof, JGM, Langendijk, JA, Sijtsema, NM & Steenbakkers, RJHM 2018, '18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia' Radiotherapy and Oncology, vol. 126, no. 1, pp. 89-95. https://doi.org/10.1016/j.radonc.2017.08.024

18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia. / van Dijk, Lisanne V; Noordzij, Walter; Brouwer, Charlotte L; Boellaard, Ronald; Burgerhof, Johannes G M; Langendijk, Johannes A; Sijtsema, Nanna M; Steenbakkers, Roel J H M.

In: Radiotherapy and Oncology, Vol. 126, No. 1, 01.2018, p. 89-95.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - 18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia

AU - van Dijk, Lisanne V

AU - Noordzij, Walter

AU - Brouwer, Charlotte L

AU - Boellaard, Ronald

AU - Burgerhof, Johannes G M

AU - Langendijk, Johannes A

AU - Sijtsema, Nanna M

AU - Steenbakkers, Roel J H M

N1 - Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

PY - 2018/1

Y1 - 2018/1

N2 - BACKGROUND AND PURPOSE: Current prediction of radiation-induced xerostomia 12months after radiotherapy (Xer12m) is based on mean parotid gland dose and baseline xerostomia (Xerbaseline) scores. The hypothesis of this study was that prediction of Xer12m is improved with patient-specific characteristics extracted from 18F-FDG PET images, quantified in PET image biomarkers (PET-IBMs).PATIENTS AND METHODS: Intensity and textural PET-IBMs of the parotid gland were collected from pre-treatment 18F-FDG PET images of 161 head and neck cancer patients. Patient-rated toxicity was prospectively collected. Multivariable logistic regression models resulting from step-wise forward selection and Lasso regularisation were internally validated by bootstrapping. The reference model with parotid gland dose and Xerbaseline was compared with the resulting PET-IBM models.RESULTS: High values of the intensity PET-IBM (90th percentile (P90)) and textural PET-IBM (Long Run High Grey-level Emphasis 3 (LRHG3E)) were significantly associated with lower risk of Xer12m. Both PET-IBMs significantly added in the prediction of Xer12m to the reference model. The AUC increased from 0.73 (0.65-0.81) (reference model) to 0.77 (0.70-0.84) (P90) and 0.77 (0.69-0.84) (LRHG3E).CONCLUSION: Prediction of Xer12m was significantly improved with pre-treatment PET-IBMs, indicating that high metabolic parotid gland activity is associated with lower risk of developing late xerostomia. This study highlights the potential of incorporating patient-specific PET-derived functional characteristics into NTCP model development.

AB - BACKGROUND AND PURPOSE: Current prediction of radiation-induced xerostomia 12months after radiotherapy (Xer12m) is based on mean parotid gland dose and baseline xerostomia (Xerbaseline) scores. The hypothesis of this study was that prediction of Xer12m is improved with patient-specific characteristics extracted from 18F-FDG PET images, quantified in PET image biomarkers (PET-IBMs).PATIENTS AND METHODS: Intensity and textural PET-IBMs of the parotid gland were collected from pre-treatment 18F-FDG PET images of 161 head and neck cancer patients. Patient-rated toxicity was prospectively collected. Multivariable logistic regression models resulting from step-wise forward selection and Lasso regularisation were internally validated by bootstrapping. The reference model with parotid gland dose and Xerbaseline was compared with the resulting PET-IBM models.RESULTS: High values of the intensity PET-IBM (90th percentile (P90)) and textural PET-IBM (Long Run High Grey-level Emphasis 3 (LRHG3E)) were significantly associated with lower risk of Xer12m. Both PET-IBMs significantly added in the prediction of Xer12m to the reference model. The AUC increased from 0.73 (0.65-0.81) (reference model) to 0.77 (0.70-0.84) (P90) and 0.77 (0.69-0.84) (LRHG3E).CONCLUSION: Prediction of Xer12m was significantly improved with pre-treatment PET-IBMs, indicating that high metabolic parotid gland activity is associated with lower risk of developing late xerostomia. This study highlights the potential of incorporating patient-specific PET-derived functional characteristics into NTCP model development.

KW - Journal Article

U2 - 10.1016/j.radonc.2017.08.024

DO - 10.1016/j.radonc.2017.08.024

M3 - Article

VL - 126

SP - 89

EP - 95

JO - Radiotherapy and Oncology

JF - Radiotherapy and Oncology

SN - 0167-8140

IS - 1

ER -