A physiological approach to the simulation of bone remodeling as a self-organizational control process

M. G. Mullender, R. Huiskes*, H. Weinans

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Although the capacity of bone to adapt to functional mechanical requirements has been known for more than a century, it is still unclear how the bone adaption processes are regulated. We hypothesize that osteocytes are sensitive to mechanical loading and control the regulation of bone mass in their environment. Recently, simulation models of such a process were developed, using the finite element method. It was discovered that these models produce discontinuous structures, not unlike trabecular bone. However, it was also found that severe discontinuities violate the continuum assumption underlying the finite element method and that the solutions were element mesh dependent. We have developed a simulation model (which is physiologically and mechanically more consistent) which maintains the self-organizational characteristics but does not produce these discontinuities. This was accomplished by separating the sensor density and range of action from the mesh. The results clearly show that predicted trabecular morphology, i.e. sizes and branching of struts, depend on the actual relationship between local load, sensor density and range of influence. We believe that the model is suitable to study the relationship between trabecular morphology and load and can also explain adaptation of morphology, in the sense of 'Wolff's law'.

Original languageEnglish
Pages (from-to)1389-1394
Number of pages6
JournalJournal of Biomechanics
Issue number11
Publication statusPublished - 1 Jan 1994
Externally publishedYes

Cite this