Activation of the hypothalamus-pituitary-adrenal axis by bacterial endotoxins: Routes and intermediate signals

Fred J.H. Tilders*, Roel H. DeRuk, Anne Marie Van Dam, Valerie A.M. Vincent, Karel Schotanus, Jek H.A. Persoons

*Corresponding author for this work

Research output: Contribution to journalReview articleAcademicpeer-review

Abstract

Peripheral administration of endotoxin induces brain-mediated responses, including activation of the hypothalamus-pituitary-adrenal (HPA) axis and changes in thermoregulation. This paper reviews the mechanisms by which endotoxin affects these responses. The effects on theroregulaton are complex and include macrophage-dependent hyperthermic and hypothermic responses. Low doses of endotoxin, given IP, activate peripheral macrophages to produce interleukin (IL)-1β, which enters the circulation and acts as a hormonal signal. IL-1 may pass fenestrated endothelium in the median eminence to stimulate corticotropin-releasing hormone (CRH) secretion from the CRH nerve-terminals. In addition, IL-1 may activate brain endothelial cells to produce IL-1, IL-6, prostaglandins, etc., and secrete these substances into the brain. By paracrine actions, these substances may affect neurons (e.g., CRH neurons) or act on microglial cells, which show IL-1-induced IL-1 production and therefore amplify and prolong the intracerebral IL-1 signal. In contrast, high doses of endotoxin given IV may directly stimulate endothelial cells to produce IL-1. IL-6, and prostaglandin-E2 (PGE2) and thereby activate the HPA axis in a macrophage-independent manner.

Original languageEnglish
Pages (from-to)209-232
Number of pages24
JournalPsychoneuroendocrinology
Volume19
Issue number2
DOIs
Publication statusPublished - 1994

Cite this