TY - JOUR
T1 - Amyloid-β-independent regulators of tau pathology in Alzheimer disease
AU - van der Kant, Rik
AU - Goldstein, Lawrence S. B.
AU - Ossenkoppele, Rik
N1 - Funding Information:
The authors thank P. Scheltens, J. Young and P. van Bokhoven for discussion and critical reading of the manuscript, and D. Berron for assistance with figure preparation. R.v.d.K. is supported by an Alzheimer Netherlands Pilot Grant (WE.-3-2017-09) and by a Weston Brain Institute Rapid Response Netherlands Grant (NR170059). L.S.B.G. is supported by National Institute on Ageing (NIA) grant 1RF1AG048083-01 and by California Institute for Regenerative Medicine (CIRM) RB5-07011 grants.
Publisher Copyright:
© 2019, Springer Nature Limited.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - The global epidemic of Alzheimer disease (AD) is worsening, and no approved treatment can revert or arrest progression of this disease. AD pathology is characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain. Genetic data, as well as autopsy and neuroimaging studies in patients with AD, indicate that Aβ plaque deposition precedes cortical tau pathology. Because Aβ accumulation has been considered the initial insult that drives both the accumulation of tau pathology and tau-mediated neurodegeneration in AD, the development of AD therapeutics has focused mostly on removing Aβ from the brain. However, striking preclinical evidence from AD mouse models and patient-derived human induced pluripotent stem cell models indicates that tau pathology can progress independently of Aβ accumulation and arises downstream of genetic risk factors for AD and aberrant metabolic pathways. This Review outlines novel insights from preclinical research that implicate apolipoprotein E, the endocytic system, cholesterol metabolism and microglial activation as Aβ-independent regulators of tau pathology. These factors are discussed in the context of emerging findings from clinical pathology, functional neuroimaging and other approaches in humans. Finally, we discuss the implications of these new insights for current Aβ-targeted strategies and highlight the emergence of novel therapeutic strategies that target processes upstream of both Aβ and tau.
AB - The global epidemic of Alzheimer disease (AD) is worsening, and no approved treatment can revert or arrest progression of this disease. AD pathology is characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain. Genetic data, as well as autopsy and neuroimaging studies in patients with AD, indicate that Aβ plaque deposition precedes cortical tau pathology. Because Aβ accumulation has been considered the initial insult that drives both the accumulation of tau pathology and tau-mediated neurodegeneration in AD, the development of AD therapeutics has focused mostly on removing Aβ from the brain. However, striking preclinical evidence from AD mouse models and patient-derived human induced pluripotent stem cell models indicates that tau pathology can progress independently of Aβ accumulation and arises downstream of genetic risk factors for AD and aberrant metabolic pathways. This Review outlines novel insights from preclinical research that implicate apolipoprotein E, the endocytic system, cholesterol metabolism and microglial activation as Aβ-independent regulators of tau pathology. These factors are discussed in the context of emerging findings from clinical pathology, functional neuroimaging and other approaches in humans. Finally, we discuss the implications of these new insights for current Aβ-targeted strategies and highlight the emergence of novel therapeutic strategies that target processes upstream of both Aβ and tau.
UR - http://www.scopus.com/inward/record.url?scp=85075929965&partnerID=8YFLogxK
U2 - 10.1038/s41583-019-0240-3
DO - 10.1038/s41583-019-0240-3
M3 - Review article
C2 - 31780819
VL - 21
SP - 21
EP - 35
JO - Nature Reviews Neuroscience
JF - Nature Reviews Neuroscience
SN - 1471-003X
IS - 1
ER -