Abstract

AIMS: Cell matrix modulating protein SPARCL-1 is highly expressed by astrocytes during CNS development and following acute CNS damage. Applying NanoLC-MS/MS to CSF of RRMS and SPMS patients, we identified SPARCL-1 as differentially expressed between these two stages of MS, suggesting a potential as CSF biomarker to differentiate RRMS from SPMS and a role in MS pathogenesis.

METHODS: This study examines the potential of SPARCL-1 as CSF biomarker discriminating RRMS from SPMS in three independent cohorts (n = 249), analyses its expression pattern in MS lesions (n = 26), and studies its regulation in cultured human brain microvasculature endothelial cells (BEC) after exposure to MS-relevant inflammatory mediators.

RESULTS: SPARCL-1 expression in CSF was significantly higher in SPMS compared to RRMS in a Dutch cohort of 76 patients. This finding was not replicated in 2 additional cohorts of MS patients from Sweden (n = 81) and Switzerland (n = 92). In chronic MS lesions, but not active lesions or NAWM, a vessel expression pattern of SPARCL-1 was observed in addition to the expression by astrocytes. EC were found to express SPARCL-1 in chronic MS lesions, and SPARCL-1 expression was regulated by MS-relevant inflammatory mediators in cultured human BEC.

CONCLUSIONS: Conflicting results of SPARCL-1's differential expression in CSF of three independent cohorts of RRMS and SPMS patients precludes its use as biomarker for disease progression. The expression of SPARCL-1 by BEC in chronic MS lesions together with its regulation by inflammatory mediators in vitro suggest a role for SPARCL-1 in MS neuropathology, possibly at the brain vascular level.

Original languageEnglish
Pages (from-to)404-416
Number of pages13
JournalNeuropathology and Applied Neurobiology
Volume44
Issue number4
DOIs
Publication statusPublished - Jun 2018

Cite this

@article{9827fe48d65640aaa902e3b9527ba24f,
title = "Brain endothelial cell expression of SPARCL-1 is specific to chronic multiple sclerosis lesions and is regulated by inflammatory mediators in vitro",
abstract = "AIMS: Cell matrix modulating protein SPARCL-1 is highly expressed by astrocytes during CNS development and following acute CNS damage. Applying NanoLC-MS/MS to CSF of RRMS and SPMS patients, we identified SPARCL-1 as differentially expressed between these two stages of MS, suggesting a potential as CSF biomarker to differentiate RRMS from SPMS and a role in MS pathogenesis.METHODS: This study examines the potential of SPARCL-1 as CSF biomarker discriminating RRMS from SPMS in three independent cohorts (n = 249), analyses its expression pattern in MS lesions (n = 26), and studies its regulation in cultured human brain microvasculature endothelial cells (BEC) after exposure to MS-relevant inflammatory mediators.RESULTS: SPARCL-1 expression in CSF was significantly higher in SPMS compared to RRMS in a Dutch cohort of 76 patients. This finding was not replicated in 2 additional cohorts of MS patients from Sweden (n = 81) and Switzerland (n = 92). In chronic MS lesions, but not active lesions or NAWM, a vessel expression pattern of SPARCL-1 was observed in addition to the expression by astrocytes. EC were found to express SPARCL-1 in chronic MS lesions, and SPARCL-1 expression was regulated by MS-relevant inflammatory mediators in cultured human BEC.CONCLUSIONS: Conflicting results of SPARCL-1's differential expression in CSF of three independent cohorts of RRMS and SPMS patients precludes its use as biomarker for disease progression. The expression of SPARCL-1 by BEC in chronic MS lesions together with its regulation by inflammatory mediators in vitro suggest a role for SPARCL-1 in MS neuropathology, possibly at the brain vascular level.",
author = "C Bridel and Koel-Simmelink, {M J A} and L Peferoen and {Derada Troletti}, C and S Durieux and R Gorter and E Nutma and P Gami and E Iacobaeus and L Brundin and J Kuhle and H Vrenken and J Killestein and Piersma, {S R} and Pham, {T V} and {De Vries}, {H E} and S Amor and Jimenez, {C R} and Teunissen, {C E}",
note = "{\circledC} 2017 British Neuropathological Society.",
year = "2018",
month = "6",
doi = "10.1111/nan.12412",
language = "English",
volume = "44",
pages = "404--416",
journal = "Neuropathology and Applied Neurobiology",
issn = "0305-1846",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - Brain endothelial cell expression of SPARCL-1 is specific to chronic multiple sclerosis lesions and is regulated by inflammatory mediators in vitro

AU - Bridel, C

AU - Koel-Simmelink, M J A

AU - Peferoen, L

AU - Derada Troletti, C

AU - Durieux, S

AU - Gorter, R

AU - Nutma, E

AU - Gami, P

AU - Iacobaeus, E

AU - Brundin, L

AU - Kuhle, J

AU - Vrenken, H

AU - Killestein, J

AU - Piersma, S R

AU - Pham, T V

AU - De Vries, H E

AU - Amor, S

AU - Jimenez, C R

AU - Teunissen, C E

N1 - © 2017 British Neuropathological Society.

PY - 2018/6

Y1 - 2018/6

N2 - AIMS: Cell matrix modulating protein SPARCL-1 is highly expressed by astrocytes during CNS development and following acute CNS damage. Applying NanoLC-MS/MS to CSF of RRMS and SPMS patients, we identified SPARCL-1 as differentially expressed between these two stages of MS, suggesting a potential as CSF biomarker to differentiate RRMS from SPMS and a role in MS pathogenesis.METHODS: This study examines the potential of SPARCL-1 as CSF biomarker discriminating RRMS from SPMS in three independent cohorts (n = 249), analyses its expression pattern in MS lesions (n = 26), and studies its regulation in cultured human brain microvasculature endothelial cells (BEC) after exposure to MS-relevant inflammatory mediators.RESULTS: SPARCL-1 expression in CSF was significantly higher in SPMS compared to RRMS in a Dutch cohort of 76 patients. This finding was not replicated in 2 additional cohorts of MS patients from Sweden (n = 81) and Switzerland (n = 92). In chronic MS lesions, but not active lesions or NAWM, a vessel expression pattern of SPARCL-1 was observed in addition to the expression by astrocytes. EC were found to express SPARCL-1 in chronic MS lesions, and SPARCL-1 expression was regulated by MS-relevant inflammatory mediators in cultured human BEC.CONCLUSIONS: Conflicting results of SPARCL-1's differential expression in CSF of three independent cohorts of RRMS and SPMS patients precludes its use as biomarker for disease progression. The expression of SPARCL-1 by BEC in chronic MS lesions together with its regulation by inflammatory mediators in vitro suggest a role for SPARCL-1 in MS neuropathology, possibly at the brain vascular level.

AB - AIMS: Cell matrix modulating protein SPARCL-1 is highly expressed by astrocytes during CNS development and following acute CNS damage. Applying NanoLC-MS/MS to CSF of RRMS and SPMS patients, we identified SPARCL-1 as differentially expressed between these two stages of MS, suggesting a potential as CSF biomarker to differentiate RRMS from SPMS and a role in MS pathogenesis.METHODS: This study examines the potential of SPARCL-1 as CSF biomarker discriminating RRMS from SPMS in three independent cohorts (n = 249), analyses its expression pattern in MS lesions (n = 26), and studies its regulation in cultured human brain microvasculature endothelial cells (BEC) after exposure to MS-relevant inflammatory mediators.RESULTS: SPARCL-1 expression in CSF was significantly higher in SPMS compared to RRMS in a Dutch cohort of 76 patients. This finding was not replicated in 2 additional cohorts of MS patients from Sweden (n = 81) and Switzerland (n = 92). In chronic MS lesions, but not active lesions or NAWM, a vessel expression pattern of SPARCL-1 was observed in addition to the expression by astrocytes. EC were found to express SPARCL-1 in chronic MS lesions, and SPARCL-1 expression was regulated by MS-relevant inflammatory mediators in cultured human BEC.CONCLUSIONS: Conflicting results of SPARCL-1's differential expression in CSF of three independent cohorts of RRMS and SPMS patients precludes its use as biomarker for disease progression. The expression of SPARCL-1 by BEC in chronic MS lesions together with its regulation by inflammatory mediators in vitro suggest a role for SPARCL-1 in MS neuropathology, possibly at the brain vascular level.

U2 - 10.1111/nan.12412

DO - 10.1111/nan.12412

M3 - Article

VL - 44

SP - 404

EP - 416

JO - Neuropathology and Applied Neurobiology

JF - Neuropathology and Applied Neurobiology

SN - 0305-1846

IS - 4

ER -