TY - JOUR
T1 - Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation
AU - Spaas, Jan
AU - Franssen, Wouter M. A.
AU - Keytsman, Charly
AU - Blancquaert, Laura
AU - Vanmierlo, Tim
AU - Bogie, Jeroen
AU - Broux, Bieke
AU - Hellings, Niels
AU - van Horssen, Jack
AU - Posa, Dheeraj Kumar
AU - Hoetker, David
AU - Baba, Shahid P.
AU - Derave, Wim
AU - Eijnde, Bert O.
N1 - Funding Information:
This research was funded by the Special Research Fund (BOF, Hasselt University, Belgium) and Research Foundation Flanders (FWO Vlaanderen, Belgium; 1138520N).
Funding Information:
We sincerely thank prof. dr. Aruni Bhatnagar from the University of Louisville, Diabetes and Obesity Center for his hospitality and useful advice. We are grateful to Flamma (Flamma Group, Chignolo d?Isola, Bergamo, Italy) for providing L-carnosine and L-anserine, and K. Wauterickx (Hasselt University) for assistance with immunohistochemistry on human brain samples. Figure 7 a was created in BioRender.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Background: Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. Methods: The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). Results: Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (β-alanyl-l-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. Conclusions: Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS.
AB - Background: Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. Methods: The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). Results: Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (β-alanyl-l-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. Conclusions: Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS.
KW - Acrolein
KW - Carnosine
KW - Multiple sclerosis
KW - Neuroinflammation
KW - Oxidative stress
KW - Reactive carbonyl
UR - http://www.scopus.com/inward/record.url?scp=85118759302&partnerID=8YFLogxK
U2 - 10.1186/s12974-021-02306-9
DO - 10.1186/s12974-021-02306-9
M3 - Article
C2 - 34740381
SN - 1742-2094
VL - 18
JO - Journal of Neuroinflammation
JF - Journal of Neuroinflammation
IS - 1
M1 - 255
ER -