Celastrol-induced degradation of FANCD2 sensitizes pediatric high-grade gliomas to the DNA-crosslinking agent carboplatin

Dennis S. Metselaar, Michaël H. Meel, Bente Benedict, Piotr Waranecki, Jan Koster, Gertjan J.L. Kaspers, Esther Hulleman*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Background: Pediatric high-grade gliomas (pHGG) are the leading cause of cancer-related death during childhood. Due to their diffuse growth characteristics, chemoresistance and location behind the blood-brain barrier (BBB), the prognosis of pHGG has barely improved in the past decades. As such, there is a dire need for new therapies that circumvent those difficulties. Since aberrant expression of DNA damage-response associated Fanconi anemia proteins play a central role in the onset and therapy resistance of many cancers, we here investigated if FANCD2 depletion could sensitize pHGG to additional DNA damage. Methods: We determined the capacity of celastrol, a BBB-penetrable compound that degrades FANCD2, to sensitize glioma cells to the archetypical DNA-crosslinking agent carboplatin in vitro in seven patient-derived pHGG models. In addition, we tested this drug combination in vivo in a patient-derived orthotopic pHGG xenograft model. Underlying mechanisms to drug response were investigated using mRNA expression profiling, western blotting, immunofluorescence, FANCD2 knockdown and DNA fiber assays. Findings: FANCD2 is overexpressed in HGGs and depletion of FANCD2 by celastrol synergises with carboplatin to induce cytotoxicity. Combination therapy prolongs survival of pHGG-bearing mice over monotherapy and control groups in vivo (P<0.05). In addition, our results suggest that celastrol treatment stalls ongoing replication forks, causing sensitivity to DNA-crosslinking in FANCD2-dependent glioma cells. Interpretation: Our results show that depletion of FANCD2 acts as a chemo-sensitizing strategy in pHGG. Combination therapy using celastrol and carboplatin might serve as a clinically relevant strategy for the treatment of pHGG. Funding: This study was funded by a grant from the Children Cancer-Free Foundation (KIKA, project 210). The disclosed funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Original languageEnglish
Pages (from-to)81-92
Number of pages12
Publication statusPublished - 1 Dec 2019

Cite this