Chemotherapeutic treatment of bone marrow stromal cells strongly affects their protective effect on acute myeloid leukemia cell survival

B. Moshaver, M.A. van der Pol, A.H. Westra, G.J. Ossenkoppele, S. Zweegman, G.J. Schuurhuis

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Bone marrow stromal cells (BMSCs) have been found to support leukemic cell survival; however, the mechanisms responsible are far from elucidated yet. Therefore, the effect of BMSCs on both proliferation and apoptosis characteristics of acute myeloid leukaemia (AML) cells was investigated as well as the effect of BMSCs exposure to chemotherapy on the stromal supportive capacity. Leukemic HL-60 and primary AML cells were either untreated or treated with cytarabine and subsequently cultured for 3-4 days, in the presence or absence of untreated or cytarabine-treated BMSCs. The effect on proliferation and apoptosis was investigated with flow cytometry using CFSE labeling and Syto16 and 7AAD staining. BMSCs were found to maintain cytarabine-exposed primary AML cells by protection against spontaneous apoptosis. Accordingly, an increase in phosphorylated-AKT and Bcl-2 expression was found. Concomitant exposure of BMSCs to cytarabine resulted in a dose-dependent decrease of protective capacity of BMSCs. Thus, inhibition of spontaneous apoptosis of leukemic cells mediated by phosphorylation of AKT/Bcl-2 pathway results in protection of leukemic cells by BMSCs, which decreases after BMSCs exposure to chemotherapy. Targeting both the tumor cells and intervening in their interaction with the bone marrow microenvironment may thus affect clinical outcome in AML.
Original languageEnglish
Pages (from-to)134-148
Number of pages15
JournalLeukemia and Lymphoma
Volume49
Issue number1
DOIs
Publication statusPublished - Jan 2008

Cite this

@article{caeadb48374045808d1077ff0b7f55c9,
title = "Chemotherapeutic treatment of bone marrow stromal cells strongly affects their protective effect on acute myeloid leukemia cell survival",
abstract = "Bone marrow stromal cells (BMSCs) have been found to support leukemic cell survival; however, the mechanisms responsible are far from elucidated yet. Therefore, the effect of BMSCs on both proliferation and apoptosis characteristics of acute myeloid leukaemia (AML) cells was investigated as well as the effect of BMSCs exposure to chemotherapy on the stromal supportive capacity. Leukemic HL-60 and primary AML cells were either untreated or treated with cytarabine and subsequently cultured for 3-4 days, in the presence or absence of untreated or cytarabine-treated BMSCs. The effect on proliferation and apoptosis was investigated with flow cytometry using CFSE labeling and Syto16 and 7AAD staining. BMSCs were found to maintain cytarabine-exposed primary AML cells by protection against spontaneous apoptosis. Accordingly, an increase in phosphorylated-AKT and Bcl-2 expression was found. Concomitant exposure of BMSCs to cytarabine resulted in a dose-dependent decrease of protective capacity of BMSCs. Thus, inhibition of spontaneous apoptosis of leukemic cells mediated by phosphorylation of AKT/Bcl-2 pathway results in protection of leukemic cells by BMSCs, which decreases after BMSCs exposure to chemotherapy. Targeting both the tumor cells and intervening in their interaction with the bone marrow microenvironment may thus affect clinical outcome in AML.",
keywords = "AML, Apoptosis, Microenvironment, Proliferation",
author = "B. Moshaver and {van der Pol}, M.A. and A.H. Westra and G.J. Ossenkoppele and S. Zweegman and G.J. Schuurhuis",
year = "2008",
month = "1",
doi = "10.1080/10428190701593636",
language = "English",
volume = "49",
pages = "134--148",
journal = "Leukemia and Lymphoma",
issn = "1042-8194",
publisher = "Informa Healthcare",
number = "1",

}

Chemotherapeutic treatment of bone marrow stromal cells strongly affects their protective effect on acute myeloid leukemia cell survival. / Moshaver, B.; van der Pol, M.A.; Westra, A.H.; Ossenkoppele, G.J.; Zweegman, S.; Schuurhuis, G.J.

In: Leukemia and Lymphoma, Vol. 49, No. 1, 01.2008, p. 134-148.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Chemotherapeutic treatment of bone marrow stromal cells strongly affects their protective effect on acute myeloid leukemia cell survival

AU - Moshaver, B.

AU - van der Pol, M.A.

AU - Westra, A.H.

AU - Ossenkoppele, G.J.

AU - Zweegman, S.

AU - Schuurhuis, G.J.

PY - 2008/1

Y1 - 2008/1

N2 - Bone marrow stromal cells (BMSCs) have been found to support leukemic cell survival; however, the mechanisms responsible are far from elucidated yet. Therefore, the effect of BMSCs on both proliferation and apoptosis characteristics of acute myeloid leukaemia (AML) cells was investigated as well as the effect of BMSCs exposure to chemotherapy on the stromal supportive capacity. Leukemic HL-60 and primary AML cells were either untreated or treated with cytarabine and subsequently cultured for 3-4 days, in the presence or absence of untreated or cytarabine-treated BMSCs. The effect on proliferation and apoptosis was investigated with flow cytometry using CFSE labeling and Syto16 and 7AAD staining. BMSCs were found to maintain cytarabine-exposed primary AML cells by protection against spontaneous apoptosis. Accordingly, an increase in phosphorylated-AKT and Bcl-2 expression was found. Concomitant exposure of BMSCs to cytarabine resulted in a dose-dependent decrease of protective capacity of BMSCs. Thus, inhibition of spontaneous apoptosis of leukemic cells mediated by phosphorylation of AKT/Bcl-2 pathway results in protection of leukemic cells by BMSCs, which decreases after BMSCs exposure to chemotherapy. Targeting both the tumor cells and intervening in their interaction with the bone marrow microenvironment may thus affect clinical outcome in AML.

AB - Bone marrow stromal cells (BMSCs) have been found to support leukemic cell survival; however, the mechanisms responsible are far from elucidated yet. Therefore, the effect of BMSCs on both proliferation and apoptosis characteristics of acute myeloid leukaemia (AML) cells was investigated as well as the effect of BMSCs exposure to chemotherapy on the stromal supportive capacity. Leukemic HL-60 and primary AML cells were either untreated or treated with cytarabine and subsequently cultured for 3-4 days, in the presence or absence of untreated or cytarabine-treated BMSCs. The effect on proliferation and apoptosis was investigated with flow cytometry using CFSE labeling and Syto16 and 7AAD staining. BMSCs were found to maintain cytarabine-exposed primary AML cells by protection against spontaneous apoptosis. Accordingly, an increase in phosphorylated-AKT and Bcl-2 expression was found. Concomitant exposure of BMSCs to cytarabine resulted in a dose-dependent decrease of protective capacity of BMSCs. Thus, inhibition of spontaneous apoptosis of leukemic cells mediated by phosphorylation of AKT/Bcl-2 pathway results in protection of leukemic cells by BMSCs, which decreases after BMSCs exposure to chemotherapy. Targeting both the tumor cells and intervening in their interaction with the bone marrow microenvironment may thus affect clinical outcome in AML.

KW - AML

KW - Apoptosis

KW - Microenvironment

KW - Proliferation

U2 - 10.1080/10428190701593636

DO - 10.1080/10428190701593636

M3 - Article

VL - 49

SP - 134

EP - 148

JO - Leukemia and Lymphoma

JF - Leukemia and Lymphoma

SN - 1042-8194

IS - 1

ER -