Abstract

Background: Fractional flow reserve (FFR) computation from coronary computed tomography angiography (CTA) datasets (FFRCT) has emerged as a promising noninvasive test to assess hemodynamic severity of coronary artery disease (CAD), but has not yet been compared with traditional functional imaging. Objectives: The purpose of this study was to evaluate the diagnostic performance of FFRCT and compare it with coronary CTA, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) for ischemia diagnosis. Methods: This subanalysis involved 208 prospectively included patients with suspected stable CAD, who underwent 256-slice coronary CTA, 99mTc-tetrofosmin SPECT, [15O]H2O PET, and routine 3-vessel invasive FFR measurements. FFRCT values were retrospectively derived from the coronary CTA images. Images from each modality were interpreted by core laboratories, and their diagnostic performances were compared using invasively measured FFR ≤0.80 as the reference standard. Results: In total, 505 of 612 (83%) vessels could be evaluated with FFRCT. FFRCT showed a diagnostic accuracy, sensitivity, and specificity of 87%, 90%, and 86% on a per-vessel basis and 78%, 96%, and 63% on a per-patient basis, respectively. Area under the receiver-operating characteristic curve (AUC) for identification of ischemia-causing lesions was significantly greater for FFRCT (0.94 and 0.92) in comparison with coronary CTA (0.83 and 0.81; p < 0.01 for both) and SPECT (0.70 and 0.75; p < 0.01 for both), on a per-vessel and -patient level, respectively. FFRCT also outperformed PET on a per-vessel basis (AUC 0.87; p < 0.01), but not on a per-patient basis (AUC 0.91; p = 0.56). In the intention-to-diagnose analysis, PET showed the highest per-patient and -vessel AUC followed by FFRCT (0.86 vs. 0.83; p = 0.157; and 0.90 vs. 0.79; p = 0.005, respectively). Conclusions: In this study, FFRCT showed higher diagnostic performance than standard coronary CTA, SPECT, and PET for vessel-specific ischemia, provided coronary CTA images were evaluable by FFRCT, whereas PET had a favorable performance in per-patient and intention-to-diagnose analysis. Still, in patients in whom 3-vessel FFRCT could be analyzed, FFRCT holds clinical potential to provide anatomic and hemodynamic significance of coronary lesions.
LanguageEnglish
Pages161-173
JournalJournal of the American College of Cardiology
Volume73
Issue number2
DOIs
Publication statusPublished - 2019

Cite this

@article{15765bb039f44aa2a4dd4434faa4fca9,
title = "Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis",
abstract = "Background: Fractional flow reserve (FFR) computation from coronary computed tomography angiography (CTA) datasets (FFRCT) has emerged as a promising noninvasive test to assess hemodynamic severity of coronary artery disease (CAD), but has not yet been compared with traditional functional imaging. Objectives: The purpose of this study was to evaluate the diagnostic performance of FFRCT and compare it with coronary CTA, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) for ischemia diagnosis. Methods: This subanalysis involved 208 prospectively included patients with suspected stable CAD, who underwent 256-slice coronary CTA, 99mTc-tetrofosmin SPECT, [15O]H2O PET, and routine 3-vessel invasive FFR measurements. FFRCT values were retrospectively derived from the coronary CTA images. Images from each modality were interpreted by core laboratories, and their diagnostic performances were compared using invasively measured FFR ≤0.80 as the reference standard. Results: In total, 505 of 612 (83{\%}) vessels could be evaluated with FFRCT. FFRCT showed a diagnostic accuracy, sensitivity, and specificity of 87{\%}, 90{\%}, and 86{\%} on a per-vessel basis and 78{\%}, 96{\%}, and 63{\%} on a per-patient basis, respectively. Area under the receiver-operating characteristic curve (AUC) for identification of ischemia-causing lesions was significantly greater for FFRCT (0.94 and 0.92) in comparison with coronary CTA (0.83 and 0.81; p < 0.01 for both) and SPECT (0.70 and 0.75; p < 0.01 for both), on a per-vessel and -patient level, respectively. FFRCT also outperformed PET on a per-vessel basis (AUC 0.87; p < 0.01), but not on a per-patient basis (AUC 0.91; p = 0.56). In the intention-to-diagnose analysis, PET showed the highest per-patient and -vessel AUC followed by FFRCT (0.86 vs. 0.83; p = 0.157; and 0.90 vs. 0.79; p = 0.005, respectively). Conclusions: In this study, FFRCT showed higher diagnostic performance than standard coronary CTA, SPECT, and PET for vessel-specific ischemia, provided coronary CTA images were evaluable by FFRCT, whereas PET had a favorable performance in per-patient and intention-to-diagnose analysis. Still, in patients in whom 3-vessel FFRCT could be analyzed, FFRCT holds clinical potential to provide anatomic and hemodynamic significance of coronary lesions.",
author = "Driessen, {Roel S.} and Ibrahim Danad and Stuijfzand, {Wijnand J.} and Raijmakers, {Pieter G.} and Schumacher, {Stefan P.} and {van Diemen}, {Pepijn A.} and Leipsic, {Jonathon A.} and Juhani Knuuti and Underwood, {S. Richard} and {van de Ven}, {Peter M.} and {van Rossum}, {Albert C.} and Taylor, {Charles A.} and Paul Knaapen",
year = "2019",
doi = "10.1016/j.jacc.2018.10.056",
language = "English",
volume = "73",
pages = "161--173",
journal = "Journal of the American College of Cardiology",
issn = "0735-1097",
publisher = "Elsevier USA",
number = "2",

}

TY - JOUR

T1 - Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis

AU - Driessen, Roel S.

AU - Danad, Ibrahim

AU - Stuijfzand, Wijnand J.

AU - Raijmakers, Pieter G.

AU - Schumacher, Stefan P.

AU - van Diemen, Pepijn A.

AU - Leipsic, Jonathon A.

AU - Knuuti, Juhani

AU - Underwood, S. Richard

AU - van de Ven, Peter M.

AU - van Rossum, Albert C.

AU - Taylor, Charles A.

AU - Knaapen, Paul

PY - 2019

Y1 - 2019

N2 - Background: Fractional flow reserve (FFR) computation from coronary computed tomography angiography (CTA) datasets (FFRCT) has emerged as a promising noninvasive test to assess hemodynamic severity of coronary artery disease (CAD), but has not yet been compared with traditional functional imaging. Objectives: The purpose of this study was to evaluate the diagnostic performance of FFRCT and compare it with coronary CTA, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) for ischemia diagnosis. Methods: This subanalysis involved 208 prospectively included patients with suspected stable CAD, who underwent 256-slice coronary CTA, 99mTc-tetrofosmin SPECT, [15O]H2O PET, and routine 3-vessel invasive FFR measurements. FFRCT values were retrospectively derived from the coronary CTA images. Images from each modality were interpreted by core laboratories, and their diagnostic performances were compared using invasively measured FFR ≤0.80 as the reference standard. Results: In total, 505 of 612 (83%) vessels could be evaluated with FFRCT. FFRCT showed a diagnostic accuracy, sensitivity, and specificity of 87%, 90%, and 86% on a per-vessel basis and 78%, 96%, and 63% on a per-patient basis, respectively. Area under the receiver-operating characteristic curve (AUC) for identification of ischemia-causing lesions was significantly greater for FFRCT (0.94 and 0.92) in comparison with coronary CTA (0.83 and 0.81; p < 0.01 for both) and SPECT (0.70 and 0.75; p < 0.01 for both), on a per-vessel and -patient level, respectively. FFRCT also outperformed PET on a per-vessel basis (AUC 0.87; p < 0.01), but not on a per-patient basis (AUC 0.91; p = 0.56). In the intention-to-diagnose analysis, PET showed the highest per-patient and -vessel AUC followed by FFRCT (0.86 vs. 0.83; p = 0.157; and 0.90 vs. 0.79; p = 0.005, respectively). Conclusions: In this study, FFRCT showed higher diagnostic performance than standard coronary CTA, SPECT, and PET for vessel-specific ischemia, provided coronary CTA images were evaluable by FFRCT, whereas PET had a favorable performance in per-patient and intention-to-diagnose analysis. Still, in patients in whom 3-vessel FFRCT could be analyzed, FFRCT holds clinical potential to provide anatomic and hemodynamic significance of coronary lesions.

AB - Background: Fractional flow reserve (FFR) computation from coronary computed tomography angiography (CTA) datasets (FFRCT) has emerged as a promising noninvasive test to assess hemodynamic severity of coronary artery disease (CAD), but has not yet been compared with traditional functional imaging. Objectives: The purpose of this study was to evaluate the diagnostic performance of FFRCT and compare it with coronary CTA, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) for ischemia diagnosis. Methods: This subanalysis involved 208 prospectively included patients with suspected stable CAD, who underwent 256-slice coronary CTA, 99mTc-tetrofosmin SPECT, [15O]H2O PET, and routine 3-vessel invasive FFR measurements. FFRCT values were retrospectively derived from the coronary CTA images. Images from each modality were interpreted by core laboratories, and their diagnostic performances were compared using invasively measured FFR ≤0.80 as the reference standard. Results: In total, 505 of 612 (83%) vessels could be evaluated with FFRCT. FFRCT showed a diagnostic accuracy, sensitivity, and specificity of 87%, 90%, and 86% on a per-vessel basis and 78%, 96%, and 63% on a per-patient basis, respectively. Area under the receiver-operating characteristic curve (AUC) for identification of ischemia-causing lesions was significantly greater for FFRCT (0.94 and 0.92) in comparison with coronary CTA (0.83 and 0.81; p < 0.01 for both) and SPECT (0.70 and 0.75; p < 0.01 for both), on a per-vessel and -patient level, respectively. FFRCT also outperformed PET on a per-vessel basis (AUC 0.87; p < 0.01), but not on a per-patient basis (AUC 0.91; p = 0.56). In the intention-to-diagnose analysis, PET showed the highest per-patient and -vessel AUC followed by FFRCT (0.86 vs. 0.83; p = 0.157; and 0.90 vs. 0.79; p = 0.005, respectively). Conclusions: In this study, FFRCT showed higher diagnostic performance than standard coronary CTA, SPECT, and PET for vessel-specific ischemia, provided coronary CTA images were evaluable by FFRCT, whereas PET had a favorable performance in per-patient and intention-to-diagnose analysis. Still, in patients in whom 3-vessel FFRCT could be analyzed, FFRCT holds clinical potential to provide anatomic and hemodynamic significance of coronary lesions.

UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059344291&origin=inward

U2 - 10.1016/j.jacc.2018.10.056

DO - 10.1016/j.jacc.2018.10.056

M3 - Article

VL - 73

SP - 161

EP - 173

JO - Journal of the American College of Cardiology

T2 - Journal of the American College of Cardiology

JF - Journal of the American College of Cardiology

SN - 0735-1097

IS - 2

ER -