Computerised patient-specific prediction of the recovery profile of upper limb capacity within stroke services: the next step

Ruud W. Selles, Eleni-Rosalina Andrinopoulou, Rinske H. Nijland, Rick van der Vliet, Jorrit Slaman, Erwin E. H. van Wegen, Dimitris Rizopoulos, Gerard M. Ribbers, Carel G. M. Meskers, Gert Kwakkel

Research output: Contribution to journalArticleAcademicpeer-review


Introduction Predicting upper limb capacity recovery is important to set treatment goals, select therapies and plan discharge. We introduce a prediction model of the patient-specific profile of upper limb capacity recovery up to 6 months poststroke by incorporating all serially assessed clinical information from patients. Methods Model input was recovery profile of 450 patients with a first-ever ischaemic hemispheric stroke measured using the Action Research Arm Test (ARAT). Subjects received at least three assessment sessions, starting within the first week until 6 months poststroke. We developed mixed-effects models that are able to deal with one or multiple measurements per subject, measured at non-fixed time points. The prediction accuracy of the different models was established by a fivefold cross-validation procedure. Results A model with only ARAT time course, finger extension and shoulder abduction performed as good as models with more covariates. For the final model, cross-validation prediction errors at 6 months poststroke decreased as the number of measurements per subject increased, from a median error of 8.4 points on the ARAT (Q1-Q3:1.7-28.1) when one measurement early poststroke was used, to 2.3 (Q1-Q3:1-7.2) for seven measurements. An online version of the recovery model was developed that can be linked to data acquisition environments. Conclusion Our innovative dynamic model can predict real-time, patient-specific upper limb capacity recovery profiles up to 6 months poststroke. The model can use all available serially assessed data in a flexible way, creating a prediction at any desired moment poststroke, stand-alone or linked with an electronic health record system.

Original languageEnglish
Article numbere324637
Pages (from-to)574-581
Number of pages8
JournalJournal of neurology, neurosurgery, and psychiatry
Issue number6
Early online date21 Jan 2021
Publication statusPublished - 1 Jun 2021

Cite this