TY - JOUR
T1 - Detection of silent cells, synchronization and modulatory activity in developing cellular networks
AU - Hjorth, Johannes J J
AU - Dawitz, Julia
AU - Kroon, Tim
AU - Pires, Johny
AU - Dassen, Valerie J
AU - Berkhout, Janna A
AU - Emperador Melero, Javier
AU - Nadadhur, Aish G
AU - Alevra, Mihai
AU - Toonen, Ruud F
AU - Heine, Vivi M
AU - Mansvelder, Huibert D
AU - Meredith, Rhiannon M
N1 - © 2015 Wiley Periodicals, Inc.
PY - 2016/4
Y1 - 2016/4
N2 - Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers.
AB - Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers.
KW - Animals
KW - Calcium/metabolism
KW - Cells, Cultured
KW - Embryonic Stem Cells/physiology
KW - Entorhinal Cortex/drug effects
KW - GABA-A Receptor Antagonists/pharmacology
KW - Humans
KW - Imaging, Three-Dimensional/methods
KW - Membrane Potentials/drug effects
KW - Mice, Inbred C57BL
KW - Neural Pathways/drug effects
KW - Neurons/drug effects
KW - Pattern Recognition, Automated/methods
KW - Periodicity
KW - Pyridazines/pharmacology
KW - Software
KW - Tissue Culture Techniques
KW - Voltage-Sensitive Dye Imaging/methods
U2 - 10.1002/dneu.22319
DO - 10.1002/dneu.22319
M3 - Article
C2 - 26097169
VL - 76
SP - 357
EP - 374
JO - Developmental Neurobiology
JF - Developmental Neurobiology
SN - 1932-8451
IS - 4
ER -