Determinants of Cognitive Impairment in Patients with Multiple Sclerosis with and without Atrophy

Anand J C Eijlers, Kim A Meijer, Quinten van Geest, Jeroen J G Geurts, Menno M Schoonheim

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Purpose To investigate the discrepancy between patients with multiple sclerosis (MS) without atrophy who have already developed cognitive impairment and patients with MS with atrophy who have preserved cognitive function. Materials and Methods This retrospective imaging study, with imaging acquired between 2008 and 2012, included 332 patients with MS (106 men and 226 women; mean age, 48.1 years; range, 23.0-72.5 years) and 96 healthy control participants. Cognitive impairment was defined as cognitive performance of z less than -1.5 compared with that in control participants in greater than or equal to two cognitive domains. Atrophy was defined as cortical and deep gray matter volumes of z less than -1.5 compared with that in control participants. White matter lesions were assessed with T2-imaging, tract fractional anisotropy (ie, integrity) with diffusion MRI, and regional centrality (ie, importance within network) with functional MRI. Within each atrophy group, patients with cognitive impairment and preserved cognitive function were compared and regression analyses were performed to predict cognitive impairment. Results A total of 132 of 328 patients with MS had no atrophy; of these, 42 of 132 (32%) had cognitive impairment. Cognitive impairment in patients without atrophy was predicted by level of education (Wald test, 11.63; P < .01) and posterior cingulate centrality (Wald test, 6.82; P < .01). A total of 65 of 328 patients with MS had atrophy; of these, 49 of 65 (75%) had cognitive impairment. Cognitive impairment in patients with atrophy was predicted by white matter tract fractional anisotropy (Wald test, 4.89; P = .03) and posterior cingulate centrality (Wald test, 7.19; P < .01). Conclusion Cognitive impairment was related to white matter damage, but only in patients with MS with atrophy. In patients without atrophy, a lower level of education was most important for cognitive impairment. Posterior cingulate cortex showed functional abnormalities in all MS groups with cognitive impairment, regardless of atrophy.

Original languageEnglish
Pages (from-to)544-551
JournalRadiology
Volume288
Issue number2
Early online date18 May 2018
DOIs
Publication statusPublished - 1 Aug 2018

Cite this

@article{9fb99b83ad434abc949180f0906b75aa,
title = "Determinants of Cognitive Impairment in Patients with Multiple Sclerosis with and without Atrophy",
abstract = "Purpose To investigate the discrepancy between patients with multiple sclerosis (MS) without atrophy who have already developed cognitive impairment and patients with MS with atrophy who have preserved cognitive function. Materials and Methods This retrospective imaging study, with imaging acquired between 2008 and 2012, included 332 patients with MS (106 men and 226 women; mean age, 48.1 years; range, 23.0-72.5 years) and 96 healthy control participants. Cognitive impairment was defined as cognitive performance of z less than -1.5 compared with that in control participants in greater than or equal to two cognitive domains. Atrophy was defined as cortical and deep gray matter volumes of z less than -1.5 compared with that in control participants. White matter lesions were assessed with T2-imaging, tract fractional anisotropy (ie, integrity) with diffusion MRI, and regional centrality (ie, importance within network) with functional MRI. Within each atrophy group, patients with cognitive impairment and preserved cognitive function were compared and regression analyses were performed to predict cognitive impairment. Results A total of 132 of 328 patients with MS had no atrophy; of these, 42 of 132 (32{\%}) had cognitive impairment. Cognitive impairment in patients without atrophy was predicted by level of education (Wald test, 11.63; P < .01) and posterior cingulate centrality (Wald test, 6.82; P < .01). A total of 65 of 328 patients with MS had atrophy; of these, 49 of 65 (75{\%}) had cognitive impairment. Cognitive impairment in patients with atrophy was predicted by white matter tract fractional anisotropy (Wald test, 4.89; P = .03) and posterior cingulate centrality (Wald test, 7.19; P < .01). Conclusion Cognitive impairment was related to white matter damage, but only in patients with MS with atrophy. In patients without atrophy, a lower level of education was most important for cognitive impairment. Posterior cingulate cortex showed functional abnormalities in all MS groups with cognitive impairment, regardless of atrophy.",
author = "Eijlers, {Anand J C} and Meijer, {Kim A} and {van Geest}, Quinten and Geurts, {Jeroen J G} and Schoonheim, {Menno M}",
note = "{\circledC} RSNA, 2018 Online supplemental material is available for this article.",
year = "2018",
month = "8",
day = "1",
doi = "10.1148/radiol.2018172808",
language = "English",
volume = "288",
pages = "544--551",
journal = "Radiology Now",
issn = "0033-8419",
publisher = "Radiological Society of North America Inc.",
number = "2",

}

Determinants of Cognitive Impairment in Patients with Multiple Sclerosis with and without Atrophy. / Eijlers, Anand J C; Meijer, Kim A; van Geest, Quinten; Geurts, Jeroen J G; Schoonheim, Menno M.

In: Radiology, Vol. 288, No. 2, 01.08.2018, p. 544-551.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Determinants of Cognitive Impairment in Patients with Multiple Sclerosis with and without Atrophy

AU - Eijlers, Anand J C

AU - Meijer, Kim A

AU - van Geest, Quinten

AU - Geurts, Jeroen J G

AU - Schoonheim, Menno M

N1 - © RSNA, 2018 Online supplemental material is available for this article.

PY - 2018/8/1

Y1 - 2018/8/1

N2 - Purpose To investigate the discrepancy between patients with multiple sclerosis (MS) without atrophy who have already developed cognitive impairment and patients with MS with atrophy who have preserved cognitive function. Materials and Methods This retrospective imaging study, with imaging acquired between 2008 and 2012, included 332 patients with MS (106 men and 226 women; mean age, 48.1 years; range, 23.0-72.5 years) and 96 healthy control participants. Cognitive impairment was defined as cognitive performance of z less than -1.5 compared with that in control participants in greater than or equal to two cognitive domains. Atrophy was defined as cortical and deep gray matter volumes of z less than -1.5 compared with that in control participants. White matter lesions were assessed with T2-imaging, tract fractional anisotropy (ie, integrity) with diffusion MRI, and regional centrality (ie, importance within network) with functional MRI. Within each atrophy group, patients with cognitive impairment and preserved cognitive function were compared and regression analyses were performed to predict cognitive impairment. Results A total of 132 of 328 patients with MS had no atrophy; of these, 42 of 132 (32%) had cognitive impairment. Cognitive impairment in patients without atrophy was predicted by level of education (Wald test, 11.63; P < .01) and posterior cingulate centrality (Wald test, 6.82; P < .01). A total of 65 of 328 patients with MS had atrophy; of these, 49 of 65 (75%) had cognitive impairment. Cognitive impairment in patients with atrophy was predicted by white matter tract fractional anisotropy (Wald test, 4.89; P = .03) and posterior cingulate centrality (Wald test, 7.19; P < .01). Conclusion Cognitive impairment was related to white matter damage, but only in patients with MS with atrophy. In patients without atrophy, a lower level of education was most important for cognitive impairment. Posterior cingulate cortex showed functional abnormalities in all MS groups with cognitive impairment, regardless of atrophy.

AB - Purpose To investigate the discrepancy between patients with multiple sclerosis (MS) without atrophy who have already developed cognitive impairment and patients with MS with atrophy who have preserved cognitive function. Materials and Methods This retrospective imaging study, with imaging acquired between 2008 and 2012, included 332 patients with MS (106 men and 226 women; mean age, 48.1 years; range, 23.0-72.5 years) and 96 healthy control participants. Cognitive impairment was defined as cognitive performance of z less than -1.5 compared with that in control participants in greater than or equal to two cognitive domains. Atrophy was defined as cortical and deep gray matter volumes of z less than -1.5 compared with that in control participants. White matter lesions were assessed with T2-imaging, tract fractional anisotropy (ie, integrity) with diffusion MRI, and regional centrality (ie, importance within network) with functional MRI. Within each atrophy group, patients with cognitive impairment and preserved cognitive function were compared and regression analyses were performed to predict cognitive impairment. Results A total of 132 of 328 patients with MS had no atrophy; of these, 42 of 132 (32%) had cognitive impairment. Cognitive impairment in patients without atrophy was predicted by level of education (Wald test, 11.63; P < .01) and posterior cingulate centrality (Wald test, 6.82; P < .01). A total of 65 of 328 patients with MS had atrophy; of these, 49 of 65 (75%) had cognitive impairment. Cognitive impairment in patients with atrophy was predicted by white matter tract fractional anisotropy (Wald test, 4.89; P = .03) and posterior cingulate centrality (Wald test, 7.19; P < .01). Conclusion Cognitive impairment was related to white matter damage, but only in patients with MS with atrophy. In patients without atrophy, a lower level of education was most important for cognitive impairment. Posterior cingulate cortex showed functional abnormalities in all MS groups with cognitive impairment, regardless of atrophy.

U2 - 10.1148/radiol.2018172808

DO - 10.1148/radiol.2018172808

M3 - Article

VL - 288

SP - 544

EP - 551

JO - Radiology Now

JF - Radiology Now

SN - 0033-8419

IS - 2

ER -