EEG-based neurophysiological indicators of hallucinations in Alzheimer's disease: Comparison with dementia with Lewy bodies

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We studied neurophysiological indicators of hallucinations in Alzheimer's disease patients with hallucinations (ADhall+), and compared them with nonhallucinating AD (ADhall-) and dementia with Lewy bodies (DLBhall+) patients. Thirty-six matched ADhall+ and 108 ADhall- and 29 DLBhall+ patients were selected from the Amsterdam Dementia Cohort. Electroencephalography (EEG) spectral and functional connectivity (FC) analyses (phase lag index) were performed. Quantitative and visual EEG measures were combined in a random forest algorithm to determine which EEG-based variable(s) play a role in hallucinations. ADhall+ patients showed lower peak frequency (7.26 vs. 7.94 Hz, p < 0.01), α2-and β-power, and α2-FC but higher δ-power compared to ADhall-. ADhall+ showed lower δ-power, higher β-power, and α1-FC than DLBhall+ but did not differ in peak frequency (7.26 vs. 6.95 Hz), θ- or α-power. ADhall+ patients could be differentiated from ADhall- and DLBhall+ with a weighted accuracy of 71% with α1-power and 100% with β-FC, the 2 most differentiating features. In sum, EEG slowing and decrease in α1-and β-band activity form potential neurophysiological indicators of underlying cholinergic deficiency in ADhall+ and DLBhall+.

Original languageEnglish
Pages (from-to)75-83
Number of pages9
JournalNeurobiology of Aging
Volume67
DOIs
Publication statusPublished - Jul 2018

Cite this

@article{ceb4cf45dbfa42a186c63f58b9b885e4,
title = "EEG-based neurophysiological indicators of hallucinations in Alzheimer's disease: Comparison with dementia with Lewy bodies",
abstract = "We studied neurophysiological indicators of hallucinations in Alzheimer's disease patients with hallucinations (ADhall+), and compared them with nonhallucinating AD (ADhall-) and dementia with Lewy bodies (DLBhall+) patients. Thirty-six matched ADhall+ and 108 ADhall- and 29 DLBhall+ patients were selected from the Amsterdam Dementia Cohort. Electroencephalography (EEG) spectral and functional connectivity (FC) analyses (phase lag index) were performed. Quantitative and visual EEG measures were combined in a random forest algorithm to determine which EEG-based variable(s) play a role in hallucinations. ADhall+ patients showed lower peak frequency (7.26 vs. 7.94 Hz, p < 0.01), α2-and β-power, and α2-FC but higher δ-power compared to ADhall-. ADhall+ showed lower δ-power, higher β-power, and α1-FC than DLBhall+ but did not differ in peak frequency (7.26 vs. 6.95 Hz), θ- or α-power. ADhall+ patients could be differentiated from ADhall- and DLBhall+ with a weighted accuracy of 71{\%} with α1-power and 100{\%} with β-FC, the 2 most differentiating features. In sum, EEG slowing and decrease in α1-and β-band activity form potential neurophysiological indicators of underlying cholinergic deficiency in ADhall+ and DLBhall+.",
author = "Meenakshi Dauwan and Linszen, {Mascha M J} and Lemstra, {Afina W} and Philip Scheltens and Stam, {Cornelis J} and Sommer, {Iris E}",
note = "Copyright {\circledC} 2018 Elsevier Inc. All rights reserved.",
year = "2018",
month = "7",
doi = "10.1016/j.neurobiolaging.2018.03.013",
language = "English",
volume = "67",
pages = "75--83",
journal = "Neurobiology of Aging",
issn = "0197-4580",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - EEG-based neurophysiological indicators of hallucinations in Alzheimer's disease

T2 - Comparison with dementia with Lewy bodies

AU - Dauwan, Meenakshi

AU - Linszen, Mascha M J

AU - Lemstra, Afina W

AU - Scheltens, Philip

AU - Stam, Cornelis J

AU - Sommer, Iris E

N1 - Copyright © 2018 Elsevier Inc. All rights reserved.

PY - 2018/7

Y1 - 2018/7

N2 - We studied neurophysiological indicators of hallucinations in Alzheimer's disease patients with hallucinations (ADhall+), and compared them with nonhallucinating AD (ADhall-) and dementia with Lewy bodies (DLBhall+) patients. Thirty-six matched ADhall+ and 108 ADhall- and 29 DLBhall+ patients were selected from the Amsterdam Dementia Cohort. Electroencephalography (EEG) spectral and functional connectivity (FC) analyses (phase lag index) were performed. Quantitative and visual EEG measures were combined in a random forest algorithm to determine which EEG-based variable(s) play a role in hallucinations. ADhall+ patients showed lower peak frequency (7.26 vs. 7.94 Hz, p < 0.01), α2-and β-power, and α2-FC but higher δ-power compared to ADhall-. ADhall+ showed lower δ-power, higher β-power, and α1-FC than DLBhall+ but did not differ in peak frequency (7.26 vs. 6.95 Hz), θ- or α-power. ADhall+ patients could be differentiated from ADhall- and DLBhall+ with a weighted accuracy of 71% with α1-power and 100% with β-FC, the 2 most differentiating features. In sum, EEG slowing and decrease in α1-and β-band activity form potential neurophysiological indicators of underlying cholinergic deficiency in ADhall+ and DLBhall+.

AB - We studied neurophysiological indicators of hallucinations in Alzheimer's disease patients with hallucinations (ADhall+), and compared them with nonhallucinating AD (ADhall-) and dementia with Lewy bodies (DLBhall+) patients. Thirty-six matched ADhall+ and 108 ADhall- and 29 DLBhall+ patients were selected from the Amsterdam Dementia Cohort. Electroencephalography (EEG) spectral and functional connectivity (FC) analyses (phase lag index) were performed. Quantitative and visual EEG measures were combined in a random forest algorithm to determine which EEG-based variable(s) play a role in hallucinations. ADhall+ patients showed lower peak frequency (7.26 vs. 7.94 Hz, p < 0.01), α2-and β-power, and α2-FC but higher δ-power compared to ADhall-. ADhall+ showed lower δ-power, higher β-power, and α1-FC than DLBhall+ but did not differ in peak frequency (7.26 vs. 6.95 Hz), θ- or α-power. ADhall+ patients could be differentiated from ADhall- and DLBhall+ with a weighted accuracy of 71% with α1-power and 100% with β-FC, the 2 most differentiating features. In sum, EEG slowing and decrease in α1-and β-band activity form potential neurophysiological indicators of underlying cholinergic deficiency in ADhall+ and DLBhall+.

U2 - 10.1016/j.neurobiolaging.2018.03.013

DO - 10.1016/j.neurobiolaging.2018.03.013

M3 - Article

VL - 67

SP - 75

EP - 83

JO - Neurobiology of Aging

JF - Neurobiology of Aging

SN - 0197-4580

ER -