Efficacy and Safety of High-Dose Ivermectin for Reducing Malaria Transmission (IVERMAL): Protocol for a Double-Blind, Randomized, Placebo-Controlled, Dose-Finding Trial in Western Kenya

Menno R. Smit*, Eric O. Ochomo, Ghaith Aljayyoussi, Titus K Kwambai, Bernard O. Abong'o, Nabie M. Bayoh, John E. Gimnig, Aaron M Samuels, Meghna R. Desai, Penelope A. Phillips-Howard, Simon K. Kariuki, Duolao Wang, Steve A. Ward, Feiko O Ter Kuile

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND: Innovative approaches are needed to complement existing tools for malaria elimination. Ivermectin is a broad spectrum antiparasitic endectocide clinically used for onchocerciasis and lymphatic filariasis control at single doses of 150 to 200 mcg/kg. It also shortens the lifespan of mosquitoes that feed on individuals recently treated with ivermectin. However, the effect after a 150 to 200 mcg/kg oral dose is short-lived (6 to 11 days). Modeling suggests higher doses, which prolong the mosquitocidal effects, are needed to make a significant contribution to malaria elimination. Ivermectin has a wide therapeutic index and previous studies have shown doses up to 2000 mcg/kg (ie, 10 times the US Food and Drug Administration approved dose) are well tolerated and safe; the highest dose used for onchocerciasis is a single dose of 800 mcg/kg. OBJECTIVE: The aim of this study is to determine the safety, tolerability, and efficacy of ivermectin doses of 0, 300, and 600 mcg/kg/day for 3 days, when provided with a standard 3-day course of the antimalarial dihydroartemisinin-piperaquine (DP), on mosquito survival. METHODS: This is a double-blind, randomized, placebo-controlled, parallel-group, 3-arm, dose-finding trial in adults with uncomplicated malaria. Monte Carlo simulations based on pharmacokinetic modeling were performed to determine the optimum dosing regimens to be tested. Modeling showed that a 3-day regimen of 600 mcg/kg/day achieved similar median (5 to 95 percentiles) maximum drug concentrations (Cmax) of ivermectin to a single of dose of 800 mcg/kg, while increasing the median time above the lethal concentration 50% (LC50, 16 ng/mL) from 1.9 days (1.0 to 5.7) to 6.8 (3.8 to 13.4) days. The 300 mcg/kg/day dose was chosen at 50% of the higher dose to allow evaluation of the dose response. Mosquito survival will be assessed daily up to 28 days in laboratory-reared Anopheles gambiae s.s. populations fed on patients' blood taken at days 0, 2 (Cmax), 7 (primary outcome), 10, 14, 21, and 28 after the start of treatment. Safety outcomes include QT-prolongation and mydriasis. The trial will be conducted in 6 health facilities in western Kenya and requires a sample size of 141 participants (47 per arm). Sub-studies include (1) rich pharmacokinetics and (2) direct skin versus membrane feeding assays. RESULTS: Recruitment started July 20, 2015. Data collection was completed July 2, 2016. Unblinding and analysis will commence once the database has been completed, cleaned, and locked. CONCLUSIONS: High-dose ivermectin, if found to be safe and well tolerated, might offer a promising new tool for malaria elimination.
Original languageEnglish
Article number6617
Pages (from-to)e213
Number of pages15
JournalJMIR Research Protocols
Volume5
Issue number4
DOIs
Publication statusPublished - 2016

Cite this