TY - JOUR
T1 - Estimating the arterial input function from dynamic contrast-enhanced MRI data with compensation for flow enhancement (II)
T2 - Applications in spine diagnostics and assessment of crohn's disease
AU - van Schie, Jeroen J.N.
AU - Lavini, Cristina
AU - van Vliet, Lucas J.
AU - Kramer, Gem
AU - Pieters - van den Bos, Indra
AU - Marcus, J. T.
AU - Stoker, Jaap
AU - Vos, Frans M.
PY - 2018/5
Y1 - 2018/5
N2 - Background: Pharmacokinetic (PK) models can describe microvascular density and integrity. An essential component of PK models is the arterial input function (AIF) representing the time-dependent concentration of contrast agent (CA) in the blood plasma supplied to a tissue. Purpose/Hypothesis: To evaluate a novel method for subject-specific AIF estimation that takes inflow effects into account. Study Type: Retrospective study. Subjects: Thirteen clinical patients referred for spine-related complaints; 21 patients from a study into luminal Crohn's disease with known Crohn's Disease Endoscopic Index of Severity (CDEIS). Field Strength/Sequence: Dynamic fast spoiled gradient echo (FSPGR) at 3T. Assessment: A population-averaged AIF, AIFs derived from distally placed regions of interest (ROIs), and the new AIF method were applied. Tofts' PK model parameters (including vp and Ktrans) obtained with the three AIFs were compared. In the Crohn's patients Ktrans was correlated to CDEIS. Statistical Tests: The median values of the PK model parameters from the three methods were compared using a Mann-Whitney U-test. The associated variances were statistically assessed by the Brown-Forsythe test. Spearman's rank correlation coefficient was computed to test the correlation of Ktrans to CDEIS. Results: The median vp was significantly larger when using the distal ROI approach, compared to the two other methods (P < 0.05 for both comparisons, in both applications). Also, the variances in vp were significantly larger with the ROI approach (P < 0.05 for all comparisons). In the Crohn's disease study, the estimated Ktrans parameter correlated better with the CDEIS (r=0.733, P < 0.001) when the proposed AIF was used, compared to AIFs from the distal ROI method (r=0.429, P=0.067) or the population-averaged AIF (r=0.567, P=0.011). Data Conclusion: The proposed method yielded realistic PK model parameters and improved the correlation of the Ktrans parameter with CDEIS, compared to existing approaches.
AB - Background: Pharmacokinetic (PK) models can describe microvascular density and integrity. An essential component of PK models is the arterial input function (AIF) representing the time-dependent concentration of contrast agent (CA) in the blood plasma supplied to a tissue. Purpose/Hypothesis: To evaluate a novel method for subject-specific AIF estimation that takes inflow effects into account. Study Type: Retrospective study. Subjects: Thirteen clinical patients referred for spine-related complaints; 21 patients from a study into luminal Crohn's disease with known Crohn's Disease Endoscopic Index of Severity (CDEIS). Field Strength/Sequence: Dynamic fast spoiled gradient echo (FSPGR) at 3T. Assessment: A population-averaged AIF, AIFs derived from distally placed regions of interest (ROIs), and the new AIF method were applied. Tofts' PK model parameters (including vp and Ktrans) obtained with the three AIFs were compared. In the Crohn's patients Ktrans was correlated to CDEIS. Statistical Tests: The median values of the PK model parameters from the three methods were compared using a Mann-Whitney U-test. The associated variances were statistically assessed by the Brown-Forsythe test. Spearman's rank correlation coefficient was computed to test the correlation of Ktrans to CDEIS. Results: The median vp was significantly larger when using the distal ROI approach, compared to the two other methods (P < 0.05 for both comparisons, in both applications). Also, the variances in vp were significantly larger with the ROI approach (P < 0.05 for all comparisons). In the Crohn's disease study, the estimated Ktrans parameter correlated better with the CDEIS (r=0.733, P < 0.001) when the proposed AIF was used, compared to AIFs from the distal ROI method (r=0.429, P=0.067) or the population-averaged AIF (r=0.567, P=0.011). Data Conclusion: The proposed method yielded realistic PK model parameters and improved the correlation of the Ktrans parameter with CDEIS, compared to existing approaches.
KW - Arterial input function
KW - Dynamic contrast enhanced MRI
KW - Flow enhancement
KW - Pharmacokinetic modeling
UR - http://www.scopus.com/inward/record.url?scp=85035234687&partnerID=8YFLogxK
U2 - 10.1002/jmri.25905
DO - 10.1002/jmri.25905
M3 - Article
C2 - 29193469
AN - SCOPUS:85035234687
VL - 47
SP - 1197
EP - 1204
JO - Journal of magnetic resonance imaging : JMRI
JF - Journal of magnetic resonance imaging : JMRI
SN - 1053-1807
IS - 5
ER -