Ex vivo resistance in childhood acute lymphoblastic leukemia: Correlations between BCRP, MRP1, MRP4 and MRP5 ABC transporter expression and intracellular methotrexate polyglutamate accumulation

Adrian C Jaramillo, Jacqueline Cloos, Clara Lemos, Ronald W Stam, Gertjan J L Kaspers, Gerrit Jansen, Godefridus J Peters

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Chemoresistance is an important factor in the treatment failure of childhood acute lymphoblastic leukemia (ALL). One underlying mechanism of chemoresistance involves (over)expression of ATP-dependent drug efflux transporters such as multidrug resistance protein 1-5 (MRP1-5) and breast cancer resistance protein (BCRP), which can extrude the important antileukemia drug methotrexate (MTX). Survival of childhood ALL critically depends on the leukemic blasts' capacity for intracellular retention of MTX and MTX-polyglutamates. This pilot study assessed whether expression of MRP1, MRP4, MRP5 and BCRP (real-time PCR) in primary childhood ALL blasts (n = 23) correlated with ex vivo resistance to MTX (assayed by in situ thymidylate synthase inhibition assay (TSIA)), ex vivo accumulation of (radioactive) MTX polyglutamates, and patient survival. Results show that high MRP4 expression is correlated with ex vivo MTX resistance assayed by TSIA (P = 0.01). Moreover, elevated MRP4 and BCRP expression correlated with lower accumulation of MTX-PGs (P = 0.004 and P = 0.03, respectively). Combined high expression of BCRP and MRP4 even further impacted reduced MTX-PG accumulation (P = 0.02). Overall survival was lower (P logrank = 0.04) in children with ALL cells which featured a relatively high expression of both BCRP and MRP4 transporters. These results underscore the impact of high drug efflux transporter expression, notably MRP4 and BCRP, in diminished MTX response in childhood ALL.

Original languageEnglish
Pages (from-to)45-51
Number of pages7
JournalLeukemia Research
Volume79
DOIs
Publication statusPublished - Apr 2019

Cite this

@article{788d105ba48a4f7dbe5e4ce27f464665,
title = "Ex vivo resistance in childhood acute lymphoblastic leukemia: Correlations between BCRP, MRP1, MRP4 and MRP5 ABC transporter expression and intracellular methotrexate polyglutamate accumulation",
abstract = "Chemoresistance is an important factor in the treatment failure of childhood acute lymphoblastic leukemia (ALL). One underlying mechanism of chemoresistance involves (over)expression of ATP-dependent drug efflux transporters such as multidrug resistance protein 1-5 (MRP1-5) and breast cancer resistance protein (BCRP), which can extrude the important antileukemia drug methotrexate (MTX). Survival of childhood ALL critically depends on the leukemic blasts' capacity for intracellular retention of MTX and MTX-polyglutamates. This pilot study assessed whether expression of MRP1, MRP4, MRP5 and BCRP (real-time PCR) in primary childhood ALL blasts (n = 23) correlated with ex vivo resistance to MTX (assayed by in situ thymidylate synthase inhibition assay (TSIA)), ex vivo accumulation of (radioactive) MTX polyglutamates, and patient survival. Results show that high MRP4 expression is correlated with ex vivo MTX resistance assayed by TSIA (P = 0.01). Moreover, elevated MRP4 and BCRP expression correlated with lower accumulation of MTX-PGs (P = 0.004 and P = 0.03, respectively). Combined high expression of BCRP and MRP4 even further impacted reduced MTX-PG accumulation (P = 0.02). Overall survival was lower (P logrank = 0.04) in children with ALL cells which featured a relatively high expression of both BCRP and MRP4 transporters. These results underscore the impact of high drug efflux transporter expression, notably MRP4 and BCRP, in diminished MTX response in childhood ALL.",
author = "Jaramillo, {Adrian C} and Jacqueline Cloos and Clara Lemos and Stam, {Ronald W} and Kaspers, {Gertjan J L} and Gerrit Jansen and Peters, {Godefridus J}",
note = "Copyright {\circledC} 2019 Elsevier Ltd. All rights reserved.",
year = "2019",
month = "4",
doi = "10.1016/j.leukres.2019.02.008",
language = "English",
volume = "79",
pages = "45--51",
journal = "Leukemia Research",
issn = "0145-2126",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Ex vivo resistance in childhood acute lymphoblastic leukemia

T2 - Correlations between BCRP, MRP1, MRP4 and MRP5 ABC transporter expression and intracellular methotrexate polyglutamate accumulation

AU - Jaramillo, Adrian C

AU - Cloos, Jacqueline

AU - Lemos, Clara

AU - Stam, Ronald W

AU - Kaspers, Gertjan J L

AU - Jansen, Gerrit

AU - Peters, Godefridus J

N1 - Copyright © 2019 Elsevier Ltd. All rights reserved.

PY - 2019/4

Y1 - 2019/4

N2 - Chemoresistance is an important factor in the treatment failure of childhood acute lymphoblastic leukemia (ALL). One underlying mechanism of chemoresistance involves (over)expression of ATP-dependent drug efflux transporters such as multidrug resistance protein 1-5 (MRP1-5) and breast cancer resistance protein (BCRP), which can extrude the important antileukemia drug methotrexate (MTX). Survival of childhood ALL critically depends on the leukemic blasts' capacity for intracellular retention of MTX and MTX-polyglutamates. This pilot study assessed whether expression of MRP1, MRP4, MRP5 and BCRP (real-time PCR) in primary childhood ALL blasts (n = 23) correlated with ex vivo resistance to MTX (assayed by in situ thymidylate synthase inhibition assay (TSIA)), ex vivo accumulation of (radioactive) MTX polyglutamates, and patient survival. Results show that high MRP4 expression is correlated with ex vivo MTX resistance assayed by TSIA (P = 0.01). Moreover, elevated MRP4 and BCRP expression correlated with lower accumulation of MTX-PGs (P = 0.004 and P = 0.03, respectively). Combined high expression of BCRP and MRP4 even further impacted reduced MTX-PG accumulation (P = 0.02). Overall survival was lower (P logrank = 0.04) in children with ALL cells which featured a relatively high expression of both BCRP and MRP4 transporters. These results underscore the impact of high drug efflux transporter expression, notably MRP4 and BCRP, in diminished MTX response in childhood ALL.

AB - Chemoresistance is an important factor in the treatment failure of childhood acute lymphoblastic leukemia (ALL). One underlying mechanism of chemoresistance involves (over)expression of ATP-dependent drug efflux transporters such as multidrug resistance protein 1-5 (MRP1-5) and breast cancer resistance protein (BCRP), which can extrude the important antileukemia drug methotrexate (MTX). Survival of childhood ALL critically depends on the leukemic blasts' capacity for intracellular retention of MTX and MTX-polyglutamates. This pilot study assessed whether expression of MRP1, MRP4, MRP5 and BCRP (real-time PCR) in primary childhood ALL blasts (n = 23) correlated with ex vivo resistance to MTX (assayed by in situ thymidylate synthase inhibition assay (TSIA)), ex vivo accumulation of (radioactive) MTX polyglutamates, and patient survival. Results show that high MRP4 expression is correlated with ex vivo MTX resistance assayed by TSIA (P = 0.01). Moreover, elevated MRP4 and BCRP expression correlated with lower accumulation of MTX-PGs (P = 0.004 and P = 0.03, respectively). Combined high expression of BCRP and MRP4 even further impacted reduced MTX-PG accumulation (P = 0.02). Overall survival was lower (P logrank = 0.04) in children with ALL cells which featured a relatively high expression of both BCRP and MRP4 transporters. These results underscore the impact of high drug efflux transporter expression, notably MRP4 and BCRP, in diminished MTX response in childhood ALL.

U2 - 10.1016/j.leukres.2019.02.008

DO - 10.1016/j.leukres.2019.02.008

M3 - Article

VL - 79

SP - 45

EP - 51

JO - Leukemia Research

JF - Leukemia Research

SN - 0145-2126

ER -