Abstract

Antibody fragment F8-mediated interleukin 10 (IL10) delivery is a novel treatment for rheumatoid arthritis (RA). F8 binds to the extra-domain-A of fibronectin (ED-A). In this study, in vivo biodistribution and arthritis targeting of radiolabeled F8-IL10 were investigated in RA patients, followed by further animal studies. Therefore, three RA patients (DAS28 > 3.2) received 0.4 mg of 30-74 megabecquerel [124I]I-F8-IL10 for PET-CT and blood sampling. In visually identified PET-positive joints, target-to-background was calculated. Healthy mice, rats, and arthritic rats were injected with iodinated F8-IL10 or KSF-IL10 control antibody. Various organs were excised, weighed, and counted for radioactivity. Tissue sections were stained for fibronectin ED-A. In RA patients, [124I]I-F8-IL10 was cleared rapidly from the circulation with less than 1% present in blood after 5 min. PET-CT showed targeting in 38 joints (11-15 per patient) and high uptake in the liver and spleen. Mean target-to-background ratios of PET-positive joints were 2.5 ± 1.2, 1.5 times higher for clinically active than clinically silent joints. Biodistribution of radioiodinated F8-IL10 in healthy mice showed no effect of the radioiodination method. [124I]I-F8-IL10 joint uptake was also demonstrated in arthritic rats, ∼14-fold higher than that of the control antibody [124I]I-KSF-IL10 (p < 0.001). Interestingly, liver and spleen uptake were twice as high in arthritic than in healthy rats and were related to increased (∼7×) fibronectin ED-A expression in these tissues. In conclusion, [124I]I-F8-IL10 uptake was observed in arthritic joints in RA patients holding promise for visualization of inflamed joints by PET-CT imaging and therapeutic targeting. Patient observations and, subsequently, arthritic animal studies pointed to awareness of increased [124I]I-F8-IL10 uptake in the liver and spleen associated with moderate systemic inflammation. This translational study demonstrated the value of in vivo biodistribution and PET-CT-guided imaging in development of new and potential antirheumatic drugs'.
Original languageEnglish
Pages (from-to)273-281
JournalMolecular Pharmaceutics
Volume16
Issue number1
Early online date14 Dec 2018
DOIs
Publication statusPublished - 7 Jan 2019

Cite this