Abstract
Original language | English |
---|---|
Pages (from-to) | 151-158 |
Number of pages | 8 |
Journal | Nature |
Volume | 598 |
Issue number | 7879 |
DOIs | |
Publication status | Published - 7 Oct 2021 |
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Human neocortical expansion involves glutamatergic neuron diversification. / Berg, Jim; Sorensen, Staci A.; Ting, Jonathan T. et al.
In: Nature, Vol. 598, No. 7879, 07.10.2021, p. 151-158.Research output: Contribution to journal › Article › Academic › peer-review
TY - JOUR
T1 - Human neocortical expansion involves glutamatergic neuron diversification
AU - Berg, Jim
AU - Sorensen, Staci A.
AU - Ting, Jonathan T.
AU - Miller, Jeremy A.
AU - Chartrand, Thomas
AU - Buchin, Anatoly
AU - Bakken, Trygve E.
AU - Budzillo, Agata
AU - Dee, Nick
AU - Ding, Song-Lin
AU - Gouwens, Nathan W.
AU - Hodge, Rebecca D.
AU - Kalmbach, Brian
AU - Lee, Changkyu
AU - Lee, Brian R.
AU - Alfiler, Lauren
AU - Baker, Katherine
AU - Barkan, Eliza
AU - Beller, Allison
AU - Berry, Kyla
AU - Bertagnolli, Darren
AU - Bickley, Kris
AU - Bomben, Jasmine
AU - Braun, Thomas
AU - Brouner, Krissy
AU - Casper, Tamara
AU - Chong, Peter
AU - Crichton, Kirsten
AU - Dalley, Rachel
AU - de Frates, Rebecca
AU - Desta, Tsega
AU - Lee, Samuel Dingman
AU - D’Orazi, Florence
AU - Dotson, Nadezhda
AU - Egdorf, Tom
AU - Enstrom, Rachel
AU - Farrell, Colin
AU - Feng, David
AU - Fong, Olivia
AU - Furdan, Szabina
AU - Galakhova, Anna A.
AU - Gamlin, Clare
AU - Gary, Amanda
AU - Glandon, Alexandra
AU - Goldy, Jeff
AU - Gorham, Melissa
AU - Goriounova, Natalia A.
AU - Gratiy, Sergey
AU - Graybuck, Lucas
AU - Gu, Hong
AU - Hadley, Kristen
AU - Hansen, Nathan
AU - Heistek, Tim S.
AU - Henry, Alex M.
AU - Heyer, Djai B.
AU - Hill, DiJon
AU - Hill, Chris
AU - Hupp, Madie
AU - Jarsky, Tim
AU - Kebede, Sara
AU - Keene, Lisa
AU - Kim, Lisa
AU - Kim, Mean-Hwan
AU - Kroll, Matthew
AU - Latimer, Caitlin
AU - Levi, Boaz P.
AU - Link, Katherine E.
AU - Mallory, Matthew
AU - Mann, Rusty
AU - Marshall, Desiree
AU - Maxwell, Michelle
AU - McGraw, Medea
AU - McMillen, Delissa
AU - Melief, Erica
AU - Mertens, Eline J.
AU - Mezei, Leona
AU - Mihut, Norbert
AU - Mok, Stephanie
AU - Molnar, Gabor
AU - Mukora, Alice
AU - Ng, Lindsay
AU - Ngo, Kiet
AU - Nicovich, Philip R.
AU - Nyhus, Julie
AU - Olah, Gaspar
AU - Oldre, Aaron
AU - Omstead, Victoria
AU - Ozsvar, Attila
AU - Park, Daniel
AU - Peng, Hanchuan
AU - Pham, Trangthanh
AU - Pom, Christina A.
AU - Potekhina, Lydia
AU - Rajanbabu, Ramkumar
AU - Ransford, Shea
AU - Reid, David
AU - Rimorin, Christine
AU - Ruiz, Augustin
AU - Sandman, David
AU - Sulc, Josef
AU - Sunkin, Susan M.
AU - Szafer, Aaron
AU - Szemenyei, Viktor
AU - Thomsen, Elliot R.
AU - Tieu, Michael
AU - Torkelson, Amy
AU - Trinh, Jessica
AU - Tung, Herman
AU - Wakeman, Wayne
AU - Waleboer, Femke
AU - Ward, Katelyn
AU - Wilbers, René
AU - Williams, Grace
AU - Yao, Zizhen
AU - Yoon, Jae-Geun
AU - Anastassiou, Costas
AU - Arkhipov, Anton
AU - Barzo, Pal
AU - Bernard, Amy
AU - Cobbs, Charles
AU - de Witt Hamer, Philip C.
AU - Ellenbogen, Richard G.
AU - Esposito, Luke
AU - Ferreira, Manuel
AU - Gwinn, Ryder P.
AU - Hawrylycz, Michael J.
AU - Hof, Patrick R.
AU - Idema, Sander
AU - Jones, Allan R.
AU - Keene, C. Dirk
AU - Ko, Andrew L.
AU - Murphy, Gabe J.
AU - Ng, Lydia
AU - Ojemann, Jeffrey G.
AU - Patel, Anoop P.
AU - Phillips, John W.
AU - Silbergeld, Daniel L.
AU - Smith, Kimberly
AU - Tasic, Bosiljka
AU - Yuste, Rafael
AU - Segev, Idan
AU - de Kock, Christiaan P. J.
AU - Mansvelder, Huibert D.
AU - Tamas, Gabor
AU - Zeng, Hongkui
AU - Koch, Christof
AU - Lein, Ed S.
N1 - Funding Information: Hungarian Academy of Sciences, the National Research, Development and Innovation Office of Hungary GINOP-2.3.2-15-2016-00018, the Ministry of Human Capacities of Hungary 20391-3/2018/FEKUSTRAT to G.T. Neuropathology support was provided in part by the Nancy and Buster Alvord Endowment to C.D.K. Work was supported by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the specific grant agreement no. 945539 (Human Brain Project SGA3), ERANET programme iPS&BRAIN, and NWO Gravitation program BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012). This work was funded by the Allen Institute for Brain Science. We dedicate this paper to the vision, encouragement, and long-term support of our founder, Paul G. Allen. Funding Information: Acknowledgements We thank A. Wanner for providing reconstruction services through A. Szeto and R. Szeto, and Z. Popovic for facilitating the reconstruction work contributed by Mozak.science. We also thank the Mozak citizen scientists for their valuable contribution. The research was partially supported by several grant awards from institutes under the National Institutes of Health (NIH), including award U01MH114812 from National Institute of Mental Health, R01EY023173 from The National Eye Institute, U01MH105982 from the National Institute of Mental Health and Eunice Kennedy Shriver National Institute of Child Health & Human Development, and R011EY023173 from The National Institute of Allergy and Infectious Disease. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH and its subsidiary institutes. Work was supported by the Publisher Copyright: © 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/10/7
Y1 - 2021/10/7
N2 - The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer’s disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.
AB - The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer’s disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.
UR - http://www.scopus.com/inward/record.url?scp=85116429019&partnerID=8YFLogxK
U2 - 10.1038/s41586-021-03813-8
DO - 10.1038/s41586-021-03813-8
M3 - Article
C2 - 34616067
SN - 0028-0836
VL - 598
SP - 151
EP - 158
JO - Nature
JF - Nature
IS - 7879
ER -