Identification of metabolic biomarkers in relation to methotrexate response in early rheumatoid arthritis

Helen R. Gosselt*, Ittai B. Muller, Gerrit Jansen, Michel van Weeghel, Frédéric M. Vaz, Johanna M. W. Hazes, Sandra G. Heil, Robert de Jonge

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


This study aimed to identify baseline metabolic biomarkers for response to methotrexate (MTX) therapy in rheumatoid arthritis (RA) using an untargeted method. In total, 82 baseline plasma samples (41 insufficient responders and 41 sufficient responders to MTX) were selected from the Treatment in the Rotterdam Early Arthritis Cohort (tREACH, trial number: ISRCTN26791028) based on patients’ EULAR response at 3 months. Metabolites were assessed using high-performance liquid chromatography-quadrupole time of flight mass spectrometry. Differences in metabolite concentrations between insufficient and sufficient responders were assessed using partial least square regression discriminant analysis (PLS-DA) and Welch’s t-test. The predictive performance of the most significant findings was assessed in a receiver operating characteristic plot with area under the curve (AUC), sensitivity and specificity. Finally, overrepresentation analysis was performed to assess if the best discriminating metabolites were enriched in specific metabolic events. Baseline concentrations of homocystine, taurine, adenosine triphosphate, guanosine diphosphate and uric acid were significantly lower in plasma of insufficient responders versus sufficient responders, while glycolytic intermediates 1,3-/2,3-diphosphoglyceric acid, glycerol-3-phosphate and phosphoenolpyruvate were significantly higher in insufficient responders. Homocystine, glycerol-3-phosphate and 1,3-/2,3-diphosphoglyceric acid were independent predictors and together showed a high AUC of 0.81 (95% CI: 0.72–0.91) for the prediction of insufficient response, with corresponding sensitivity of 0.78 and specificity of 0.76. The Warburg effect, glycolysis and amino acid metabolism were identified as underlying metabolic events playing a role in clinical response to MTX in early RA. New metabolites and potential underlying metabolic events correlating with MTX response in early RA were identified, which warrant validation in external cohorts.
Original languageEnglish
Article number271
Pages (from-to)1-14
Number of pages14
JournalJournal of personalized medicine
Issue number4
Publication statusPublished - 10 Dec 2020

Cite this