Improved patient selection for cardiac resynchronization therapy by normalization of QRS duration to left ventricular dimension

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Aims This study evaluates the relative importance of two components of QRS prolongation, myocardial conduction velocity and travel distance of the electrical wave front (i.e. path length), for the prediction of acute response to cardiac resynchronization therapy (CRT) in left bundle branch block (LBBB) patients. Methods and results Thirty-two CRT candidates (ejection fraction <35%, LBBB) underwent cardiac magnetic resonance (CMR) imaging to provide detailed information on left ventricular (LV) dimensions. Left ventricular end-diastolic volume (LVEDV) was used as a primary measure for path length, subsequently QRSd was normalized to LV dimension (i.e. QRSd divided by LVEDV) to adjust for conduction path length. Invasive pressure-volume loop analysis at baseline and during CRT was used to assess acute pump function improvement, expressed as LV stroke work (SW) change. During CRT, SW improved by +38 ± 46% (P < 0.001). The baseline LVEDV was positively related to QRSd (R = 0.36, P = 0.044). Despite this association, a paradoxical inverse relation was found between LVEDV and SW improvement during CRT (R = -0.40; P = 0.025). Baseline unadjusted QRSd was found to be unrelated to SW changes during CRT (R = 0.16; P = 0.383), whereas normalized QRSd (QRSd/LVEDV) yielded a strong correlation with CRT response (R = 0.49; P = 0.005). Other measures of LV dimension, including LV length, LV diameter, and LV end-systolic volume, showed similar relations with normalized QRSd and SW improvement. Conclusion Since normalized QRSd reflects myocardial conduction properties, these findings suggest that myocardial conduction velocity rather than increased path length mainly determines response to CRT. Normalizing QRSd to LV dimension might provide a relatively simple method to improve patient selection for CRT.

Original languageEnglish
Pages (from-to)1508-1513
Number of pages6
JournalEuropace
Volume19
Issue number9
DOIs
Publication statusPublished - 2017

Cite this

@article{83de5ae38ef6487d923d1928b0953f56,
title = "Improved patient selection for cardiac resynchronization therapy by normalization of QRS duration to left ventricular dimension",
abstract = "Aims This study evaluates the relative importance of two components of QRS prolongation, myocardial conduction velocity and travel distance of the electrical wave front (i.e. path length), for the prediction of acute response to cardiac resynchronization therapy (CRT) in left bundle branch block (LBBB) patients. Methods and results Thirty-two CRT candidates (ejection fraction <35{\%}, LBBB) underwent cardiac magnetic resonance (CMR) imaging to provide detailed information on left ventricular (LV) dimensions. Left ventricular end-diastolic volume (LVEDV) was used as a primary measure for path length, subsequently QRSd was normalized to LV dimension (i.e. QRSd divided by LVEDV) to adjust for conduction path length. Invasive pressure-volume loop analysis at baseline and during CRT was used to assess acute pump function improvement, expressed as LV stroke work (SW) change. During CRT, SW improved by +38 ± 46{\%} (P < 0.001). The baseline LVEDV was positively related to QRSd (R = 0.36, P = 0.044). Despite this association, a paradoxical inverse relation was found between LVEDV and SW improvement during CRT (R = -0.40; P = 0.025). Baseline unadjusted QRSd was found to be unrelated to SW changes during CRT (R = 0.16; P = 0.383), whereas normalized QRSd (QRSd/LVEDV) yielded a strong correlation with CRT response (R = 0.49; P = 0.005). Other measures of LV dimension, including LV length, LV diameter, and LV end-systolic volume, showed similar relations with normalized QRSd and SW improvement. Conclusion Since normalized QRSd reflects myocardial conduction properties, these findings suggest that myocardial conduction velocity rather than increased path length mainly determines response to CRT. Normalizing QRSd to LV dimension might provide a relatively simple method to improve patient selection for CRT.",
keywords = "Cardiac magnetic resonance, Cardiac resynchronization therapy, Conduction velocity, Left bundle branch block, Left ventricular end-diastolic volume (LVEDV), Pressure-volume (PV) loops, QRS duration",
author = "A. Zweerink and L. Wu and {De Roest}, {G. J.} and R. Nijveldt and {De Cock}, {C. C.} and {Van Rossum}, {A. C.} and Allaart, {C. P.}",
year = "2017",
doi = "10.1093/europace/euw265",
language = "English",
volume = "19",
pages = "1508--1513",
journal = "Europace",
issn = "1099-5129",
publisher = "Oxford University Press",
number = "9",

}

TY - JOUR

T1 - Improved patient selection for cardiac resynchronization therapy by normalization of QRS duration to left ventricular dimension

AU - Zweerink, A.

AU - Wu, L.

AU - De Roest, G. J.

AU - Nijveldt, R.

AU - De Cock, C. C.

AU - Van Rossum, A. C.

AU - Allaart, C. P.

PY - 2017

Y1 - 2017

N2 - Aims This study evaluates the relative importance of two components of QRS prolongation, myocardial conduction velocity and travel distance of the electrical wave front (i.e. path length), for the prediction of acute response to cardiac resynchronization therapy (CRT) in left bundle branch block (LBBB) patients. Methods and results Thirty-two CRT candidates (ejection fraction <35%, LBBB) underwent cardiac magnetic resonance (CMR) imaging to provide detailed information on left ventricular (LV) dimensions. Left ventricular end-diastolic volume (LVEDV) was used as a primary measure for path length, subsequently QRSd was normalized to LV dimension (i.e. QRSd divided by LVEDV) to adjust for conduction path length. Invasive pressure-volume loop analysis at baseline and during CRT was used to assess acute pump function improvement, expressed as LV stroke work (SW) change. During CRT, SW improved by +38 ± 46% (P < 0.001). The baseline LVEDV was positively related to QRSd (R = 0.36, P = 0.044). Despite this association, a paradoxical inverse relation was found between LVEDV and SW improvement during CRT (R = -0.40; P = 0.025). Baseline unadjusted QRSd was found to be unrelated to SW changes during CRT (R = 0.16; P = 0.383), whereas normalized QRSd (QRSd/LVEDV) yielded a strong correlation with CRT response (R = 0.49; P = 0.005). Other measures of LV dimension, including LV length, LV diameter, and LV end-systolic volume, showed similar relations with normalized QRSd and SW improvement. Conclusion Since normalized QRSd reflects myocardial conduction properties, these findings suggest that myocardial conduction velocity rather than increased path length mainly determines response to CRT. Normalizing QRSd to LV dimension might provide a relatively simple method to improve patient selection for CRT.

AB - Aims This study evaluates the relative importance of two components of QRS prolongation, myocardial conduction velocity and travel distance of the electrical wave front (i.e. path length), for the prediction of acute response to cardiac resynchronization therapy (CRT) in left bundle branch block (LBBB) patients. Methods and results Thirty-two CRT candidates (ejection fraction <35%, LBBB) underwent cardiac magnetic resonance (CMR) imaging to provide detailed information on left ventricular (LV) dimensions. Left ventricular end-diastolic volume (LVEDV) was used as a primary measure for path length, subsequently QRSd was normalized to LV dimension (i.e. QRSd divided by LVEDV) to adjust for conduction path length. Invasive pressure-volume loop analysis at baseline and during CRT was used to assess acute pump function improvement, expressed as LV stroke work (SW) change. During CRT, SW improved by +38 ± 46% (P < 0.001). The baseline LVEDV was positively related to QRSd (R = 0.36, P = 0.044). Despite this association, a paradoxical inverse relation was found between LVEDV and SW improvement during CRT (R = -0.40; P = 0.025). Baseline unadjusted QRSd was found to be unrelated to SW changes during CRT (R = 0.16; P = 0.383), whereas normalized QRSd (QRSd/LVEDV) yielded a strong correlation with CRT response (R = 0.49; P = 0.005). Other measures of LV dimension, including LV length, LV diameter, and LV end-systolic volume, showed similar relations with normalized QRSd and SW improvement. Conclusion Since normalized QRSd reflects myocardial conduction properties, these findings suggest that myocardial conduction velocity rather than increased path length mainly determines response to CRT. Normalizing QRSd to LV dimension might provide a relatively simple method to improve patient selection for CRT.

KW - Cardiac magnetic resonance

KW - Cardiac resynchronization therapy

KW - Conduction velocity

KW - Left bundle branch block

KW - Left ventricular end-diastolic volume (LVEDV)

KW - Pressure-volume (PV) loops

KW - QRS duration

UR - http://www.scopus.com/inward/record.url?scp=85030550396&partnerID=8YFLogxK

U2 - 10.1093/europace/euw265

DO - 10.1093/europace/euw265

M3 - Article

VL - 19

SP - 1508

EP - 1513

JO - Europace

JF - Europace

SN - 1099-5129

IS - 9

ER -