Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders

Hoang T. Nguyen*, Julien Bryois, April Kim, Amanda Dobbyn, Laura M. Huckins, Ana B. Munoz-Manchado, Douglas M. Ruderfer, Giulio Genovese, Menachem Fromer, Xinyi Xu, Dalila Pinto, Sten Linnarsson, Matthijs Verhage, August B. Smit, Jens Hjerling-Leffler, Joseph D. Buxbaum, Christina Hultman, Pamela Sklar, Shaun M. Purcell, Kasper LageXin He, Patrick F. Sullivan, Eli A. Stahl

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Background: Integrating rare variation from trio family and case-control studies has successfully implicated specific genes contributing to risk of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD), intellectual disability (ID), developmental disorders (DDs), and epilepsy (EPI). For schizophrenia (SCZ), however, while sets of genes have been implicated through the study of rare variation, only two risk genes have been identified. Methods: We used hierarchical Bayesian modeling of rare-variant genetic architecture to estimate mean effect sizes and risk-gene proportions, analyzing the largest available collection of whole exome sequence data for SCZ (1,077 trios, 6,699 cases, and 13,028 controls), and data for four NDDs (ASD, ID, DD, and EPI; total 10,792 trios, and 4,058 cases and controls). Results: For SCZ, we estimate there are 1,551 risk genes. There are more risk genes and they have weaker effects than for NDDs. We provide power analyses to predict the number of risk-gene discoveries as more data become available. We confirm and augment prior risk gene and gene set enrichment results for SCZ and NDDs. In particular, we detected 98 new DD risk genes at FDR < 0.05. Correlations of risk-gene posterior probabilities are high across four NDDs (ρ >0.55), but low between SCZ and the NDDs (ρ <0.3). An in-depth analysis of 288 NDD genes shows there is highly significant protein-protein interaction (PPI) network connectivity, and functionally distinct PPI subnetworks based on pathway enrichment, single-cell RNA-seq cell types, and multi-region developmental brain RNA-seq. Conclusions: We have extended a pipeline used in ASD studies and applied it to infer rare genetic parameters for SCZ and four NDDs ( https://github.com/hoangtn/extTADA ). We find many new DD risk genes, supported by gene set enrichment and PPI network connectivity analyses. We find greater similarity among NDDs than between NDDs and SCZ. NDD gene subnetworks are implicated in postnatally expressed presynaptic and postsynaptic genes, and for transcriptional and post-transcriptional gene regulation in prenatal neural progenitor and stem cells.

Original languageEnglish
Article number114
JournalGenome Medicine
Volume9
Issue number1
DOIs
Publication statusPublished - 20 Dec 2017

Cite this

Nguyen, H. T., Bryois, J., Kim, A., Dobbyn, A., Huckins, L. M., Munoz-Manchado, A. B., ... Stahl, E. A. (2017). Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Medicine, 9(1), [114]. https://doi.org/10.1186/s13073-017-0497-y