TY - JOUR
T1 - Longitudinal change in ATN biomarkers in cognitively normal individuals
AU - Ebenau, Jarith L.
AU - Visser, Denise
AU - Kroeze, Lior A.
AU - van Leeuwenstijn, Mardou S. S. A.
AU - van Harten, Argonde C.
AU - Windhorst, Albert D.
AU - Golla, Sandeep V. S.
AU - Boellaard, Ronald
AU - Scheltens, Philip
AU - Barkhof, Frederik
AU - van Berckel, Bart N. M.
AU - van der Flier, Wiesje M.
N1 - Funding Information:
Wiesje van der Flier Research programs have been funded by ZonMW, NWO, EU-FP7, EU-JPND, Alzheimer Nederland, CardioVascular Onderzoek Nederland, Health~Holland, Topsector Life Sciences & Health, stichting Dioraphte, Gieskes-Strijbis fonds, stichting Equilibrio, Pasman stichting, Biogen MA Inc., Boehringer Ingelheim, Life-MI, AVID, Roche BV, Fujifilm, Combinostics. WF holds the Pasman chair. WF has performed contract research for Biogen MA Inc and Boehringer Ingelheim. WF has been an invited speaker at Boehringer Ingelheim, Biogen MA Inc., Danone, Eisai and WebMD Neurology (Medscape). WF is consultant to Oxford Health Policy Forum CIC, Roche, and Biogen MA Inc. WF was associate editor at Alzheimer’s Research & Therapy (2020-2021); she is associate editor of Brain (2021-). All funding is paid to her institution.
Funding Information:
Research of the Alzheimer Center Amsterdam is part of the neurodegeneration research program of Amsterdam Neuroscience. Alzheimer Center Amsterdam is supported by Stichting Alzheimer Nederland and Stichting VUmc fonds. The SCIENCe project is supported by research grants from Gieskes-Strijbis fonds and stichting Dioraphte. [F]florbetapir and [F]flortaucipir PET scans were funded by AVID. WF and PS are recipients of ABOARD, which is a public-private partnership receiving funding from ZonMW (#73305095007) and Health~Holland, Topsector Life Sciences & Health (PPP-allowance; #LSHM20106). Wiesje van der Flier holds the Pasman chair. Frederik Barkhof is supported by the NIHR biomedical research center at UCLH. Part of participant recruitment was accomplished through the Dutch Brain Research Registry, an online registry that facilitates participant recruitment for neuroscience studies ( www.hersenonderzoek.nl ) in the Netherlands and is funded by ZonMw-Memorabel (project no 73305095003), Amsterdam Neuroscience, Alzheimer Nederland, and Brain Foundation Netherlands. FB is supported by the NIHR biomedical research center at UCLH. 18 18
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - BACKGROUND: Biomarkers for amyloid, tau, and neurodegeneration (ATN) have predictive value for clinical progression, but it is not clear how individuals move through these stages. We examined changes in ATN profiles over time, and investigated determinants of change in A status, in a sample of cognitively normal individuals presenting with subjective cognitive decline (SCD). METHODS: We included 92 individuals with SCD from the SCIENCe project with [18F]florbetapir PET (A) available at two time points (65 ± 8y, 42% female, MMSE 29 ± 1, follow-up 2.5 ± 0.7y). We additionally used [18F]flortaucipir PET for T and medial temporal atrophy score on MRI for N. Thirty-nine individuals had complete biomarker data at baseline and follow-up, enabling the construction of ATN profiles at two time points. All underwent extensive neuropsychological assessments (follow-up time 4.9 ± 2.8y, median number of visits n = 4). We investigated changes in biomarker status and ATN profiles over time. We assessed which factors predisposed for a change from A- to A+ using logistic regression. We additionally used linear mixed models to assess change from A- to A+, compared to the group that remained A- at follow-up, as predictor for cognitive decline. RESULTS: At baseline, 62% had normal AD biomarkers (A-T-N- n = 24), 5% had non-AD pathologic change (A-T-N+ n = 2,) and 33% fell within the Alzheimer's continuum (A+T-N- n = 9, A+T+N- n = 3, A+T+N+ n = 1). Seventeen subjects (44%) changed to another ATN profile over time. Only 6/17 followed the Alzheimer's disease sequence of A → T → N, while 11/17 followed a different order (e.g., reverted back to negative biomarker status). APOE ε4 carriership inferred an increased risk of changing from A- to A+ (OR 5.2 (95% CI 1.2-22.8)). Individuals who changed from A- to A+, showed subtly steeper decline on Stroop I (β - 0.03 (SE 0.01)) and Stroop III (- 0.03 (0.01)), compared to individuals who remained A-. CONCLUSION: We observed considerable variability in the order of ATN biomarkers becoming abnormal. Individuals who became A+ at follow-up showed subtle decline on tests for attention and executive functioning, confirming clinical relevance of amyloid positivity.
AB - BACKGROUND: Biomarkers for amyloid, tau, and neurodegeneration (ATN) have predictive value for clinical progression, but it is not clear how individuals move through these stages. We examined changes in ATN profiles over time, and investigated determinants of change in A status, in a sample of cognitively normal individuals presenting with subjective cognitive decline (SCD). METHODS: We included 92 individuals with SCD from the SCIENCe project with [18F]florbetapir PET (A) available at two time points (65 ± 8y, 42% female, MMSE 29 ± 1, follow-up 2.5 ± 0.7y). We additionally used [18F]flortaucipir PET for T and medial temporal atrophy score on MRI for N. Thirty-nine individuals had complete biomarker data at baseline and follow-up, enabling the construction of ATN profiles at two time points. All underwent extensive neuropsychological assessments (follow-up time 4.9 ± 2.8y, median number of visits n = 4). We investigated changes in biomarker status and ATN profiles over time. We assessed which factors predisposed for a change from A- to A+ using logistic regression. We additionally used linear mixed models to assess change from A- to A+, compared to the group that remained A- at follow-up, as predictor for cognitive decline. RESULTS: At baseline, 62% had normal AD biomarkers (A-T-N- n = 24), 5% had non-AD pathologic change (A-T-N+ n = 2,) and 33% fell within the Alzheimer's continuum (A+T-N- n = 9, A+T+N- n = 3, A+T+N+ n = 1). Seventeen subjects (44%) changed to another ATN profile over time. Only 6/17 followed the Alzheimer's disease sequence of A → T → N, while 11/17 followed a different order (e.g., reverted back to negative biomarker status). APOE ε4 carriership inferred an increased risk of changing from A- to A+ (OR 5.2 (95% CI 1.2-22.8)). Individuals who changed from A- to A+, showed subtly steeper decline on Stroop I (β - 0.03 (SE 0.01)) and Stroop III (- 0.03 (0.01)), compared to individuals who remained A-. CONCLUSION: We observed considerable variability in the order of ATN biomarkers becoming abnormal. Individuals who became A+ at follow-up showed subtle decline on tests for attention and executive functioning, confirming clinical relevance of amyloid positivity.
UR - http://www.scopus.com/inward/record.url?scp=85137160857&partnerID=8YFLogxK
U2 - 10.1186/s13195-022-01069-6
DO - 10.1186/s13195-022-01069-6
M3 - Article
C2 - 36057616
SN - 1758-9193
VL - 14
SP - 124
JO - Alzheimer's Research & Therapy
JF - Alzheimer's Research & Therapy
IS - 1
M1 - 124
ER -