TY - GEN
T1 - Modulation of the fractal properties of low frequency endogenous brain oscillations in functional MRI by a working memory task
AU - Barnes, Anna
AU - Honey, Garry
AU - Wink, Alle Meije
AU - Bullmore, Edward T.
AU - Suckling, John
PY - 2008/11/24
Y1 - 2008/11/24
N2 - Fractals - signals that display scale-invariant behaviour - are ubiquitous in nature including a wide variety of physiological processes. Fractal analysis of blood oxygen level dependent (BOLD) time-series of fMRI acquisitions from the brain can be achieved by decomposing the data Into a hierarchy of temporal scales so that although the signal may well be irregular and contain singularities, the properties of these singularities are constant in time and the entire series can be characterised by a single scaling exponent: the Hurst exponent, H. The observation that a signal has a noninteger fractal dimension suggests that the generating system is complex and has the potential to adapt to a wide variety of challenges. In contrast, the emergence of white noise or, alternatively, signal periodicity can be seen as degradation of fractal complexity and hence, maladaptivity. We tested the hypothesis that exogenous stimuli affects fractal signal properties In the context of brain function by manipulating the cognitive demand of a working memory task and using H as a summary measure of signal complexity. We show that this stimulus has a significant effect on H estimated from resting data acquired immediately before and after the task, and that the degree of change is related to cognitive load.
AB - Fractals - signals that display scale-invariant behaviour - are ubiquitous in nature including a wide variety of physiological processes. Fractal analysis of blood oxygen level dependent (BOLD) time-series of fMRI acquisitions from the brain can be achieved by decomposing the data Into a hierarchy of temporal scales so that although the signal may well be irregular and contain singularities, the properties of these singularities are constant in time and the entire series can be characterised by a single scaling exponent: the Hurst exponent, H. The observation that a signal has a noninteger fractal dimension suggests that the generating system is complex and has the potential to adapt to a wide variety of challenges. In contrast, the emergence of white noise or, alternatively, signal periodicity can be seen as degradation of fractal complexity and hence, maladaptivity. We tested the hypothesis that exogenous stimuli affects fractal signal properties In the context of brain function by manipulating the cognitive demand of a working memory task and using H as a summary measure of signal complexity. We show that this stimulus has a significant effect on H estimated from resting data acquired immediately before and after the task, and that the degree of change is related to cognitive load.
UR - http://www.scopus.com/inward/record.url?scp=56349158724&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2008.4634338
DO - 10.1109/IJCNN.2008.4634338
M3 - Conference contribution
AN - SCOPUS:56349158724
SN - 9781424418213
T3 - Proceedings of the International Joint Conference on Neural Networks
SP - 3762
EP - 3765
BT - 2008 International Joint Conference on Neural Networks, IJCNN 2008
T2 - 2008 International Joint Conference on Neural Networks, IJCNN 2008
Y2 - 1 June 2008 through 8 June 2008
ER -