MUNC18-1 regulates the submembrane F-actin network, independently of syntaxin1 targeting, via hydrophobicity in β-sheet 10

Maria Pons-Vizcarra, Julia Kurps, Bassam Tawfik, Jakob B. Sørensen, Jan R. T. van Weering, Matthijs Verhage

Research output: Contribution to journalArticleAcademicpeer-review


MUNC18-1 (also known as STXBP1) is an essential protein for docking and fusion of secretory vesicles. Mouse chromaffin cells (MCCs) lacking MUNC18-1 show impaired secretory vesicle docking, but also mistargeting of SNARE protein syntaxin1 and an abnormally dense submembrane F-actin network. Here, we tested the contribution of both these phenomena to docking and secretion defects in MUNC18-1-deficient MCCs. We show that an abnormal F-actin network and syntaxin1 targeting defects are not observed in Snap25- or Syt1-knockout (KO) MCCs, which are also secretion deficient. We identified a MUNC18-1 mutant (V263T in β-sheet 10) that fully restores syntaxin1 targeting but not F-actin abnormalities in Munc18-1-KO cells. MUNC18-2 and -3 (also known as STXBP2 and STXBP3, respectively), which lack the hydrophobic residue at position 263, also did not restore a normal F-actin network in Munc18-1-KO cells. However, these proteins did restore the normal F-actin network when a hydrophobic residue was introduced at the corresponding position. Munc18-1-KO MCCs expressing MUNC18-1(V263T) showed normal vesicle docking and exocytosis. These results demonstrate that MUNC18-1 regulates the F-actin network independently of syntaxin1 targeting via hydrophobicity in β-sheet 10. The abnormally dense F-actin network in Munc18-1-deficient cells is not a rate-limiting barrier in secretory vesicle docking or fusion.This article has an associated First Person interview with the first author of the paper.
Original languageEnglish
JournalJournal of Cell Science
Issue number23
Publication statusPublished - 2019

Cite this