Neurovegetative symptom subtypes in young people with major depressive disorder and their structural brain correlates

Yara J. Toenders, Lianne Schmaal*, Ben J. Harrison, Richard Dinga, Michael Berk, Christopher G. Davey

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Depression is a leading cause of burden of disease among young people. Current treatments are not uniformly effective, in part due to the heterogeneous nature of major depressive disorder (MDD). Refining MDD into more homogeneous subtypes is an important step towards identifying underlying pathophysiological mechanisms and improving treatment of young people. In adults, symptom-based subtypes of depression identified using data-driven methods mainly differed in patterns of neurovegetative symptoms (sleep and appetite/weight). These subtypes have been associated with differential biological mechanisms, including immuno-metabolic markers, genetics and brain alterations (mainly in the ventral striatum, medial orbitofrontal cortex, insular cortex, anterior cingulate cortex amygdala and hippocampus). K-means clustering was applied to individual depressive symptoms from the Quick Inventory of Depressive Symptoms (QIDS) in 275 young people (15–25 years old) with MDD to identify symptom-based subtypes, and in 244 young people from an independent dataset (a subsample of the STAR*D dataset). Cortical surface area and thickness and subcortical volume were compared between the subtypes and 100 healthy controls using structural MRI. Three subtypes were identified in the discovery dataset and replicated in the independent dataset; severe depression with increased appetite, severe depression with decreased appetite and severe insomnia, and moderate depression. The severe increased appetite subtype showed lower surface area in the anterior insula compared to both healthy controls. Our findings in young people replicate the previously identified symptom-based depression subtypes in adults. The structural alterations of the anterior insular cortex add to the existing evidence of different pathophysiological mechanisms involved in this subtype.

Original languageEnglish
Article number108
JournalTranslational Psychiatry
Volume10
Issue number1
DOIs
Publication statusPublished - 1 Dec 2020

Cite this