Normalized cut group clustering of resting-state fMRI data

Martijn van den Heuvel*, Rene Mandl, Hilleke Hulshoff Pol

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Background: Functional brain imaging studies have indicated that distinct anatomical brain regions can show coherent spontaneous neuronal activity during rest. Regions that show such correlated behavior are said to form resting-state networks (RSNs). RSNs have been investigated using seed-dependent functional connectivity maps and by using a number of model-free methods. However, examining RSNs across a group of subjects is still a complex task and often involves human input in selecting meaningful networks. Methodology/Principal Findings: We report on a voxel based model-free normalized cut graph clustering approach with whole brain coverage for group analysis of resting-state data, in which the number of RSNs is computed as an optimal clustering fit of the data. Inter-voxel correlations of time-series are grouped at the individual level and the consistency of the resulting networks across subjects is clustered at the group level, defining the group RSNs. We scanned a group of 26 subjects at rest with a fast BOLD sensitive fMRI scanning protocol on a 3 Tesla MR scanner. Conclusions/Significance: An optimal group clustering fit revealed 7 RSNs. The 7 RSNs included motor/visual, auditory and attention networks and the frequently reported default mode network. The found RSNs showed large overlap with recently reported resting-state results and support the idea of the formation of spatially distinct RSNs during rest in the human brain.

Original languageEnglish
Article numbere2001
JournalPLoS ONE
Volume3
Issue number4
DOIs
Publication statusPublished - 23 Apr 2008

Cite this