Abstract

Reepithelialization is crucial for effective wound repair in burn wounds. Reactive oxygen species (ROS) have shown to be important in this. Recent studies suggest that NOX proteins produce ROS in keratinocytes. In the present study, we have studied NOX proteins in burn wounds, including the effect of C1-esterase inhibitor (C1inh) hereon, which is the endogenous inhibitor of complement activity whereof we have shown previously that it also increased the rate of reepithelialization in burn wounds. Skin tissue derived from healthy control Wistar rats (n = 6) were compared with burn-injured rats, with (n = 7) or without C1inh treatment (n = 7). After 14 days, rats were terminated. From the burn-injured rats, the entire wound and nonburned skin from the hind leg, that is, internal control was excised. From the control rats, dorsal skin was excised. In these skin samples, NOX2 and NOX4 were analyzed immunohistochemically. In nonburned rats, NOX2 was found in keratinocytes in both the basal layer and suprabasal layer of the epidermis; and the number of NOX2-positive keratinocytes was 367/mm2 (254-378). In burned rats, the number of NOX2-positive keratinocytes was significantly increased in the newly forming epidermis in the burned area to 1019/mm2 (649-1172), especially in the suprabasal layer, but significantly decreased in remote nonburned skin to 22/mm2 (6-89). C1inh treatment counteracted these changes in epidermal NOX2 expression in burned rats, both in the burned area as in remote nonburned skin. No NOX4 expression was found in the epidermis in none of the groups. NOX2 expression was increased in keratinocytes in newly forming epidermis after burn injury. C1inh, a drug that increases the rate of reepithelialization, counteracted this effect. These results suggest a role for NOX2 in the reepithelialization of burn wounds.

Original languageEnglish
Pages (from-to)427-432
Number of pages6
JournalJournal of Burn Care and Research
Volume41
Issue number2
DOIs
Publication statusPublished - 19 Feb 2020

Cite this