On the origins of adaptive immunity: innate immune receptors join the tale

Timo K van den Berg, Jeffrey A Yoder, Gary W Litman

Research output: Contribution to journalReview articleAcademicpeer-review

Abstract

Among members of the Ig superfamily (IgSF), antigen receptors have the unique capacity to rearrange their variable domains, thereby creating an extensive repertoire for antigen recognition. It is assumed that antigen receptors evolved from a non-rearranging IgSF member by insertion of a transposable element. Although the nature of this predecessor is unknown, two multigene families of innate immune receptors that bear a close structural resemblance to antigen receptor chains have been identified in mammals and bony fish, respectively: signal-regulatory proteins (SIRPs) and novel immune-type receptors (NITRs). Members of both families encode V-set Ig domains with a typical antigen receptor-like joining (J) motif and possess the potential to signal through immunoreceptor tyrosine-based inhibition motifs (ITIMs) or immunoreceptor tyrosine-based activation motifs (ITAMs). By analogy to the T-cell receptor (TCR) and certain innate receptors [e.g. killer cell inhibitory receptors (KIRs)] that recognize MHC molecules, SIRP members regulate immune function by interaction with broadly expressed 'self' ligands. We propose the existence of an evolutionary and functional link between innate and adaptive immune receptors that sheds light on the nature of the antigen receptor predecessor(s).

Original languageEnglish
Pages (from-to)11-6
Number of pages6
JournalTrends in Immunology
Volume25
Issue number1
Publication statusPublished - Jan 2004

Cite this