Optimization of attenuation correction for positron emission tomography studies of thorax and pelvis using count-based transmission scans

R. Boellaard*, A. Van Lingen, S. C M Van Balen, A. A. Lammertsma

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The quality of thorax and pelvis transmission scans and therefore of attenuation correction in PET depends on patient thickness and transmission rod source strength. The purpose of the present study was to assess the feasibility of using count-based transmission scans, thereby guaranteeing more consistent image quality and more precise quantification than with fixed transmission scan duration. First, the relation between noise equivalent counts (NEC) of 10 min calibration transmission scans and rod source activity was determined over a period of 1.5 years. Second, the relation between transmission scan counts and uniform phantom diameter was studied numerically, determining the relative contribution of counts from lines of response passing through the phantom as compared with the total number of counts. Finally, the relation between patient weight and transmission scan duration was determined for 35 patients, who were scanned at the level of thorax or pelvis. After installation of new rod sources, the NEC of transmission scans first increased slightly (5%) with decreasing rod source activity and after 3 months decreased with a rate of 2-3% per month. The numerical simulation showed that the number of transmission scan counts from lines of response passing through the phantom increased with phantom diameter up to 7 cm. For phantoms larger than 7 cm, the number of these counts decreased at approximately the same rate as the total number of transmission scan counts. Patient data confirmed that the total number of transmission scan counts decreased with increasing patient weight with about 0.5% kg-1. It can be concluded that count-based transmission scans compensate for radioactive decay of the rod sources. With count-based transmission scans, rod sources can be used for up to 1.5 years at the cost of a 50% increased transmission scan duration. For phantoms with diameters of more than 7 cm and for patients scanned at the level of thorax or pelvis, use of count-based transmission scans is feasible and results in statistically more consistent transmission scans as compared with fixed transmission scan duration.

Original languageEnglish
JournalPhysics in Medicine and Biology
Volume49
Issue number4
DOIs
Publication statusPublished - 21 Feb 2004

Cite this