TY - JOUR
T1 - Oxidized low-density lipoprotein as a delivery system for photosensitizers
T2 - Implications for photodynamic therapy of atherosclerosis
AU - De Vries, Helga E.
AU - Moor, Anne C.E.
AU - Dubbelman, Tom M.A.R.
AU - Van Berkel, Theo J.C.
AU - Kuiper, Johan
PY - 1999/4
Y1 - 1999/4
N2 - Photodynamic therapy is a promising new strategy in the treatment of cardiovascular diseases. Photodynamic therapy for vascular diseases may be improved by the specific delivery of photosensitizers to the atherosclerotic lesion. In this study, we studied whether oxidatively modified low-density lipoprotein (OxLDL) could be used as a specific carrier for photosensitizers, thereby using the scavenger receptor expressed on macrophages as a target. The photosensitizer aluminum phthalocyanine chloride (AlPc) was incorporated into OxLDL, and its photodynamic effects were studied. Macrophages (RAW 264.7) were incubated with various concentrations of OxLDL-AlPc for different periods. After illumination of the cells with red light, cytotoxicity was observed that was dependent on the time of illumination and incubation. Macrophages incubated with OxLDL-AlPc that were not illuminated revealed no cytotoxicity. The uptake of the OxLDL-AlPc complexes was mediated by scavenger receptors expressed on macrophages. In the presence of the polyanion polyinosinic acid, a specific ligand for scavenger receptors, no cytotoxicity could be observed. Serum incubations of the OxLDL-AlPc complexes revealed that these complexes stay intact after incubation. No redistribution of AlPc to other plasma (lipo-) proteins could be detected, and 80-90% of the AlPc remained associated with the OxLDL particle. These results indicate that OxLDL may function as a specific delivery system for photosensitizers to the scavenger receptors expressed on the macrophages in the atherosclerotic lesion, increasing the beneficial effects of photodynamic therapy for cardiovascular diseases.
AB - Photodynamic therapy is a promising new strategy in the treatment of cardiovascular diseases. Photodynamic therapy for vascular diseases may be improved by the specific delivery of photosensitizers to the atherosclerotic lesion. In this study, we studied whether oxidatively modified low-density lipoprotein (OxLDL) could be used as a specific carrier for photosensitizers, thereby using the scavenger receptor expressed on macrophages as a target. The photosensitizer aluminum phthalocyanine chloride (AlPc) was incorporated into OxLDL, and its photodynamic effects were studied. Macrophages (RAW 264.7) were incubated with various concentrations of OxLDL-AlPc for different periods. After illumination of the cells with red light, cytotoxicity was observed that was dependent on the time of illumination and incubation. Macrophages incubated with OxLDL-AlPc that were not illuminated revealed no cytotoxicity. The uptake of the OxLDL-AlPc complexes was mediated by scavenger receptors expressed on macrophages. In the presence of the polyanion polyinosinic acid, a specific ligand for scavenger receptors, no cytotoxicity could be observed. Serum incubations of the OxLDL-AlPc complexes revealed that these complexes stay intact after incubation. No redistribution of AlPc to other plasma (lipo-) proteins could be detected, and 80-90% of the AlPc remained associated with the OxLDL particle. These results indicate that OxLDL may function as a specific delivery system for photosensitizers to the scavenger receptors expressed on the macrophages in the atherosclerotic lesion, increasing the beneficial effects of photodynamic therapy for cardiovascular diseases.
UR - http://www.scopus.com/inward/record.url?scp=0032919510&partnerID=8YFLogxK
M3 - Article
C2 - 10087046
AN - SCOPUS:0032919510
SN - 0022-3565
VL - 289
SP - 528
EP - 534
JO - The Journal of Pharmacology and Experimental Therapeutics
JF - The Journal of Pharmacology and Experimental Therapeutics
IS - 1
ER -