Partial-volume correction in dynamic PET-CT: effect on tumor kinetic parameter estimation and validation of simplified metrics

M C F Cysouw, S V S Golla, V Frings, E F Smit, O S Hoekstra, G M Kramer, R Boellaard, QuIC-ConCePT Consortium

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND: Partial-volume effects generally result in an underestimation of tumor tracer uptake on PET-CT for small lesions, necessitating partial-volume correction (PVC) for accurate quantification. However, investigation of PVC in dynamic oncological PET studies to date is scarce. The aim of this study was to investigate PVC's impact on tumor kinetic parameter estimation from dynamic PET-CT acquisitions and subsequent validation of simplified semi-quantitative metrics. Ten patients with EGFR-mutated non-small cell lung cancer underwent dynamic 18F-fluorothymidine PET-CT before, 7 days after, and 28 days after commencing treatment with a tyrosine kinase inhibitor. Parametric PVC was applied using iterative deconvolution without and with highly constrained backprojection (HYPR) denoising, respectively. Using an image-derived input function with venous parent plasma calibration, we estimated full kinetic parameters VT, K1, and k3/k4 (BPND) using a reversible two-tissue compartment model, and simplified metrics (SUV and tumor-to-blood ratio) at 50-60 min post-injection.

RESULTS: PVC had a non-linear effect on measured activity concentrations per timeframe. PVC significantly changed each kinetic parameter, with a median increase in VT of 11.8% (up to 25.1%) and 10.8% (up to 21.7%) without and with HYPR, respectively. Relative changes in kinetic parameter estimates vs. simplified metrics after applying PVC were poorly correlated (correlations 0.36-0.62; p < 0.01). PVC increased correlations between simplified metrics and VT from 0.82 and 0.81 (p < 0.01) to 0.90 and 0.88 (p < 0.01) for SUV and TBR, respectively, albeit non-significantly. PVC also increased correlations between treatment-induced changes in simplified metrics vs. VT at 7 (SUV) and 28 (SUV and TBR) days after treatment start non-significantly. Delineation on partial-volume corrected PET images resulted in a median decrease in metabolic tumor volume of 14.3% (IQR - 22.1 to - 7.5%), and increased the effect of PVC on kinetic parameter estimates.

CONCLUSION: PVC has a significant impact on tumor kinetic parameter estimation from dynamic PET-CT data, which differs from its effect on simplified metrics. However, it affected validation of these simplified metrics both as single measurements and as biomarkers of treatment response only to a small extent. Future dynamic PET studies should preferably incorporate PVC.

TRIAL REGISTRATION: Dutch Trial Register, NTR3557 .

LanguageEnglish
Pages12
JournalEJNMMI Research
Volume9
Issue number1
DOIs
Publication statusPublished - 4 Feb 2019

Cite this

@article{56779eeb7ec54a3d870b88fa5b055788,
title = "Partial-volume correction in dynamic PET-CT: effect on tumor kinetic parameter estimation and validation of simplified metrics",
abstract = "BACKGROUND: Partial-volume effects generally result in an underestimation of tumor tracer uptake on PET-CT for small lesions, necessitating partial-volume correction (PVC) for accurate quantification. However, investigation of PVC in dynamic oncological PET studies to date is scarce. The aim of this study was to investigate PVC's impact on tumor kinetic parameter estimation from dynamic PET-CT acquisitions and subsequent validation of simplified semi-quantitative metrics. Ten patients with EGFR-mutated non-small cell lung cancer underwent dynamic 18F-fluorothymidine PET-CT before, 7 days after, and 28 days after commencing treatment with a tyrosine kinase inhibitor. Parametric PVC was applied using iterative deconvolution without and with highly constrained backprojection (HYPR) denoising, respectively. Using an image-derived input function with venous parent plasma calibration, we estimated full kinetic parameters VT, K1, and k3/k4 (BPND) using a reversible two-tissue compartment model, and simplified metrics (SUV and tumor-to-blood ratio) at 50-60 min post-injection.RESULTS: PVC had a non-linear effect on measured activity concentrations per timeframe. PVC significantly changed each kinetic parameter, with a median increase in VT of 11.8{\%} (up to 25.1{\%}) and 10.8{\%} (up to 21.7{\%}) without and with HYPR, respectively. Relative changes in kinetic parameter estimates vs. simplified metrics after applying PVC were poorly correlated (correlations 0.36-0.62; p < 0.01). PVC increased correlations between simplified metrics and VT from 0.82 and 0.81 (p < 0.01) to 0.90 and 0.88 (p < 0.01) for SUV and TBR, respectively, albeit non-significantly. PVC also increased correlations between treatment-induced changes in simplified metrics vs. VT at 7 (SUV) and 28 (SUV and TBR) days after treatment start non-significantly. Delineation on partial-volume corrected PET images resulted in a median decrease in metabolic tumor volume of 14.3{\%} (IQR - 22.1 to - 7.5{\%}), and increased the effect of PVC on kinetic parameter estimates.CONCLUSION: PVC has a significant impact on tumor kinetic parameter estimation from dynamic PET-CT data, which differs from its effect on simplified metrics. However, it affected validation of these simplified metrics both as single measurements and as biomarkers of treatment response only to a small extent. Future dynamic PET studies should preferably incorporate PVC.TRIAL REGISTRATION: Dutch Trial Register, NTR3557 .",
author = "Cysouw, {M C F} and Golla, {S V S} and V Frings and Smit, {E F} and Hoekstra, {O S} and Kramer, {G M} and R Boellaard and {QuIC-ConCePT Consortium}",
year = "2019",
month = "2",
day = "4",
doi = "10.1186/s13550-019-0483-z",
language = "English",
volume = "9",
pages = "12",
journal = "EJNMMI Research",
issn = "2191-219X",
publisher = "Springer Berlin",
number = "1",

}

Partial-volume correction in dynamic PET-CT : effect on tumor kinetic parameter estimation and validation of simplified metrics. / Cysouw, M C F; Golla, S V S; Frings, V; Smit, E F; Hoekstra, O S; Kramer, G M; Boellaard, R; QuIC-ConCePT Consortium.

In: EJNMMI Research, Vol. 9, No. 1, 04.02.2019, p. 12.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Partial-volume correction in dynamic PET-CT

T2 - EJNMMI Research

AU - Cysouw, M C F

AU - Golla, S V S

AU - Frings, V

AU - Smit, E F

AU - Hoekstra, O S

AU - Kramer, G M

AU - Boellaard, R

AU - QuIC-ConCePT Consortium

PY - 2019/2/4

Y1 - 2019/2/4

N2 - BACKGROUND: Partial-volume effects generally result in an underestimation of tumor tracer uptake on PET-CT for small lesions, necessitating partial-volume correction (PVC) for accurate quantification. However, investigation of PVC in dynamic oncological PET studies to date is scarce. The aim of this study was to investigate PVC's impact on tumor kinetic parameter estimation from dynamic PET-CT acquisitions and subsequent validation of simplified semi-quantitative metrics. Ten patients with EGFR-mutated non-small cell lung cancer underwent dynamic 18F-fluorothymidine PET-CT before, 7 days after, and 28 days after commencing treatment with a tyrosine kinase inhibitor. Parametric PVC was applied using iterative deconvolution without and with highly constrained backprojection (HYPR) denoising, respectively. Using an image-derived input function with venous parent plasma calibration, we estimated full kinetic parameters VT, K1, and k3/k4 (BPND) using a reversible two-tissue compartment model, and simplified metrics (SUV and tumor-to-blood ratio) at 50-60 min post-injection.RESULTS: PVC had a non-linear effect on measured activity concentrations per timeframe. PVC significantly changed each kinetic parameter, with a median increase in VT of 11.8% (up to 25.1%) and 10.8% (up to 21.7%) without and with HYPR, respectively. Relative changes in kinetic parameter estimates vs. simplified metrics after applying PVC were poorly correlated (correlations 0.36-0.62; p < 0.01). PVC increased correlations between simplified metrics and VT from 0.82 and 0.81 (p < 0.01) to 0.90 and 0.88 (p < 0.01) for SUV and TBR, respectively, albeit non-significantly. PVC also increased correlations between treatment-induced changes in simplified metrics vs. VT at 7 (SUV) and 28 (SUV and TBR) days after treatment start non-significantly. Delineation on partial-volume corrected PET images resulted in a median decrease in metabolic tumor volume of 14.3% (IQR - 22.1 to - 7.5%), and increased the effect of PVC on kinetic parameter estimates.CONCLUSION: PVC has a significant impact on tumor kinetic parameter estimation from dynamic PET-CT data, which differs from its effect on simplified metrics. However, it affected validation of these simplified metrics both as single measurements and as biomarkers of treatment response only to a small extent. Future dynamic PET studies should preferably incorporate PVC.TRIAL REGISTRATION: Dutch Trial Register, NTR3557 .

AB - BACKGROUND: Partial-volume effects generally result in an underestimation of tumor tracer uptake on PET-CT for small lesions, necessitating partial-volume correction (PVC) for accurate quantification. However, investigation of PVC in dynamic oncological PET studies to date is scarce. The aim of this study was to investigate PVC's impact on tumor kinetic parameter estimation from dynamic PET-CT acquisitions and subsequent validation of simplified semi-quantitative metrics. Ten patients with EGFR-mutated non-small cell lung cancer underwent dynamic 18F-fluorothymidine PET-CT before, 7 days after, and 28 days after commencing treatment with a tyrosine kinase inhibitor. Parametric PVC was applied using iterative deconvolution without and with highly constrained backprojection (HYPR) denoising, respectively. Using an image-derived input function with venous parent plasma calibration, we estimated full kinetic parameters VT, K1, and k3/k4 (BPND) using a reversible two-tissue compartment model, and simplified metrics (SUV and tumor-to-blood ratio) at 50-60 min post-injection.RESULTS: PVC had a non-linear effect on measured activity concentrations per timeframe. PVC significantly changed each kinetic parameter, with a median increase in VT of 11.8% (up to 25.1%) and 10.8% (up to 21.7%) without and with HYPR, respectively. Relative changes in kinetic parameter estimates vs. simplified metrics after applying PVC were poorly correlated (correlations 0.36-0.62; p < 0.01). PVC increased correlations between simplified metrics and VT from 0.82 and 0.81 (p < 0.01) to 0.90 and 0.88 (p < 0.01) for SUV and TBR, respectively, albeit non-significantly. PVC also increased correlations between treatment-induced changes in simplified metrics vs. VT at 7 (SUV) and 28 (SUV and TBR) days after treatment start non-significantly. Delineation on partial-volume corrected PET images resulted in a median decrease in metabolic tumor volume of 14.3% (IQR - 22.1 to - 7.5%), and increased the effect of PVC on kinetic parameter estimates.CONCLUSION: PVC has a significant impact on tumor kinetic parameter estimation from dynamic PET-CT data, which differs from its effect on simplified metrics. However, it affected validation of these simplified metrics both as single measurements and as biomarkers of treatment response only to a small extent. Future dynamic PET studies should preferably incorporate PVC.TRIAL REGISTRATION: Dutch Trial Register, NTR3557 .

U2 - 10.1186/s13550-019-0483-z

DO - 10.1186/s13550-019-0483-z

M3 - Article

VL - 9

SP - 12

JO - EJNMMI Research

JF - EJNMMI Research

SN - 2191-219X

IS - 1

ER -