Abstract
Heart failure is a multi-factorial progressive disease in which eventually the contractile performance of the heart is insufficient to meet the demands of the body, even at rest. A distinction can be made on the basis of the cause of the disease in genetic and acquired heart failure and at the functional level between systolic and diastolic heart failure. Here the basic determinants of contractile function of myocardial cells will be reviewed and an attempt will be made to elucidate their role in the development of heart failure. The following topics are addressed: the tension generating capacity, passive tension, the rate of tension development, the rate of ATP utilisation, calcium sensitivity of tension development, phosphorylation of contractile proteins, length dependent activation and stretch activation. The reduction in contractile performance during systole can be attributed predominantly to a loss of cardiomyocytes (necrosis), myocyte disarray and a decrease in myofibrillar density all resulting in a reduction in the tension generating capacity and likely also to a mismatch between energy supply and demand of the myocardium. This leads to a decline in the ejection fraction of the heart. Diastolic dysfunction can be attributed to fibrosis and an increase in titin stiffness which result in an increase in stiffness of the ventricular wall and hampers the filling of the heart with blood during diastole. A large number of post translation modifications of regulatory sarcomeric proteins influence myocardial function by altering calcium sensitivity of tension development. It is still unclear whether in concert these influences are adaptive or maladaptive during the disease process
Original language | English |
---|---|
Pages (from-to) | 47-60 |
Journal | Journal of Muscle Research and Cell Motility |
Volume | 36 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2015 |