TY - JOUR
T1 - Physical activity dimensions after stroke
T2 - patterns and relation with lower limb motor function
AU - Braakhuis, Hanneke E.M.
AU - Berger, Monique A.M.
AU - Regterschot, Ruben G.R.H.
AU - van Wegen, Erwin E.H.
AU - Selles, Ruud W.
AU - Ribbers, Gerard M.
AU - Bussmann, Johannes B.J.
AU - Meskers, Carel
AU - Kwakkel, Gert
AU - van Wegen, Erwin E.H.
AU - Nijland, Rinske
AU - Andinga, Aukje
AU - Zonjee, Valentijn
AU - Koolstra-Rutgers, Muriel
AU - van den Berg-Vos, Renske
AU - the PROFITS research group
N1 - Funding Information:
This study was performed on behalf of the PROFITS research group: Amsterdam group : Dr Carel Meskers, MD (projectleader) Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Prof. Dr. Gert Kwakkel (steering team member), Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands, Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States, Department of Neurorehabilitation, Amsterdam Rehabilitation Research Centre, Reade, Amsterdam, the Netherlands; Dr. Erwin E.H. van Wegen (steering team member), Department of Rehabilitation Medicine, Amsterdam Neuroscience and Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Funding Information:
The PROFITS study is supported by ZonMW project 104003014, titled ‘PROFITS – Precision profiling to improve long-term outcome after stroke’.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Stroke survivors show deteriorated physical functioning and physical activity levels. Physical activity levels of stroke survivors are generally low. It is increasingly recognized that physical activity is a multidimensional construct that cannot be captured in a single outcome. In-depth insight into multidimensional physical activity patterns may guide the development and timing of targeted rehabilitation interventions. This longitudinal cohort study explored how multidimensional physical activity outcomes develop during recovery in the subacute phase after stroke and if changes in physical activity were correlated to recovery of lower limb motor function. Methods: Patients were recruited during inpatient rehabilitation. At 3, 12, and 26 weeks post-onset, motor function was measured by the Fugl-Meyer Lower Extremity Assessment (FMA-LE). Physical activity was measured with the Activ8 accelerometer in multiple outcomes: counts per minute during walking (CPMwalking; a measure of Intensity), number of active bouts (Frequency), mean length of active bouts (Distribution) and % of waking time in upright positions (Duration). Generalized estimating equations (GEE) were used to study changes in physical activity over time and the relation with the change in lower limb motor recovery. Results: Thirty-nine patients (age 56 ± 9, 77% male, 89% ischemic stroke) were included. GEE models showed a significant main effect of time for PA Intensity (+ 13%, p = 0.007) and Duration (+ 64%, p = 0.012) between 3 and 12 weeks. Motor function did not show a significant effect in all PA models across the 3 timepoints (p > 0.020). A significant interaction effect of time × motor function was observed (p < 0.001). Conclusions: Patterns of PA recovery depend on the PA dimensions: PA Intensity and Duration increased mostly between 3 and 12 weeks post-stroke, whereas Frequency and Distribution did not show substantial changes. Further, no strong associations with motor recovery and high inter-individual variability were documented, which underlies the need to consider factors specific to the disease, the individual patient and the context.
AB - Background: Stroke survivors show deteriorated physical functioning and physical activity levels. Physical activity levels of stroke survivors are generally low. It is increasingly recognized that physical activity is a multidimensional construct that cannot be captured in a single outcome. In-depth insight into multidimensional physical activity patterns may guide the development and timing of targeted rehabilitation interventions. This longitudinal cohort study explored how multidimensional physical activity outcomes develop during recovery in the subacute phase after stroke and if changes in physical activity were correlated to recovery of lower limb motor function. Methods: Patients were recruited during inpatient rehabilitation. At 3, 12, and 26 weeks post-onset, motor function was measured by the Fugl-Meyer Lower Extremity Assessment (FMA-LE). Physical activity was measured with the Activ8 accelerometer in multiple outcomes: counts per minute during walking (CPMwalking; a measure of Intensity), number of active bouts (Frequency), mean length of active bouts (Distribution) and % of waking time in upright positions (Duration). Generalized estimating equations (GEE) were used to study changes in physical activity over time and the relation with the change in lower limb motor recovery. Results: Thirty-nine patients (age 56 ± 9, 77% male, 89% ischemic stroke) were included. GEE models showed a significant main effect of time for PA Intensity (+ 13%, p = 0.007) and Duration (+ 64%, p = 0.012) between 3 and 12 weeks. Motor function did not show a significant effect in all PA models across the 3 timepoints (p > 0.020). A significant interaction effect of time × motor function was observed (p < 0.001). Conclusions: Patterns of PA recovery depend on the PA dimensions: PA Intensity and Duration increased mostly between 3 and 12 weeks post-stroke, whereas Frequency and Distribution did not show substantial changes. Further, no strong associations with motor recovery and high inter-individual variability were documented, which underlies the need to consider factors specific to the disease, the individual patient and the context.
KW - Accelerometry
KW - Motor function
KW - Physical activity
KW - Stroke
UR - http://www.scopus.com/inward/record.url?scp=85121394559&partnerID=8YFLogxK
U2 - 10.1186/s12984-021-00960-x
DO - 10.1186/s12984-021-00960-x
M3 - Article
C2 - 34895265
SN - 1743-0003
VL - 18
JO - Journal of NeuroEngineering and Rehabilitation
JF - Journal of NeuroEngineering and Rehabilitation
IS - 1
M1 - 171
ER -