Platelet-Based Liquid Biopsies through the Lens of Machine Learning

Sebastian Cygert, Krzysztof Pastuszak, Franciszek Górski, Michał Sieczczyński, Piotr Juszczyk, Antoni Rutkowski, Sebastian Lewalski, Robert Różański, Maksym Albin Jopek, Jacek Jassem, Andrzej Czyżewski, Thomas Wurdinger, Myron G. Best, Anna J. Żaczek, Anna Supernat*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Liquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability to the model. In this work, we have used RNA sequencing data of tumor-educated platelets (TEPs) and performed a binary classification (cancer vs. no-cancer). First, we compiled a large-scale dataset with more than a thousand donors. Further, we used different convolutional neural networks (CNNs) and boosting methods to evaluate the classifier performance. We have obtained an impressive result of 0.96 area under the curve. We then identified different clusters of splice variants using expert knowledge from the Kyoto Encyclopedia of Genes and Genomes (KEGG). Employing boosting algorithms, we identified the features with the highest predictive power. Finally, we tested the robustness of the models using test data from novel hospitals. Notably, we did not observe any decrease in model performance. Our work proves the great potential of using TEP data for cancer patient classification and opens the avenue for profound cancer diagnostics.
Original languageEnglish
Article number2336
Issue number8
Publication statusPublished - 1 Apr 2023

Cite this