Pure-tone audiometry without bone-conduction thresholds: using the digits-in-noise test to detect conductive hearing loss

Karina C. De Sousa, Cas Smits, David R. Moore, Hermanus Carel Myburgh, De Wet Swanepoel*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Objective: COVID-19 has been prohibitive to traditional audiological services. No- or low-touch audiological assessment outside a sound-booth precludes test batteries including bone conduction audiometry. This study investigated whether conductive hearing loss (CHL) can be differentiated from sensorineural hearing loss (SNHL) using pure-tone air conduction audiometry and a digits-in-noise (DIN) test. Design: A retrospective sample was analysed using binomial logistic regressions, which determined the effects of pure tone thresholds or averages, speech recognition threshold (SRT), and age on the likelihood that participants had CHL or bilateral SNHL. Study sample: Data of 158 adults with bilateral SNHL (n = 122; PTA0.5–4 kHz > 25 dB HL bilaterally) or CHL (n = 36; air conduction PTA0.5–4 kHz > 25 dB HL and ≥20 dB air bone gap in the affected ears) were included. Results: The model which best discriminated between CHL and bilateral SNHL used low-frequency pure-tone average (PTA), diotic DIN SRT, and age with an area under the ROC curve of 0.98 and sensitivity and specificity of 97.2 and 93.4%, respectively. Conclusion: CHL can be accurately distinguished from SNHL using pure-tone air conduction audiometry and a diotic DIN. Restrictions on traditional audiological assessment due to COVID-19 require lower touch audiological care which reduces infection risk.

Original languageEnglish
Pages (from-to)801-808
Number of pages8
JournalInternational Journal of Audiology
Issue number10
Publication statusPublished - 1 Oct 2020

Cite this