Reliable dual tensor model estimation in single and crossing fibers based on jeffreys prior

Jianfei Yang, Dirk H.J. Poot, Matthan W.A. Caan, Tanja Su, Charles B.L.M. Majoie, Lucas J. Van Vliet, Frans M. Vos

Research output: Contribution to journalArticleAcademicpeer-review


Purpose This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Methods Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD). This data-acquisition prior is based on the Fisher information matrix and enables the assessment whether two tensors are mandatory to describe the data. The method is compared to Maximum Likelihood Estimation (MLE) of the dual tensor model and to FSL's ball-and-stick approach. Results Monte Carlo experiments demonstrated that JARD's volume fractions correlated well with the ground truth for single and crossing fiber configurations. In single fiber configurations JARD automatically reduced the volume fraction of one compartment to (almost) zero. The variance in fractional anisotropy (FA) of the main tensor component was thereby reduced compared to MLE. JARD and MLE gave a comparable outcome in data simulating crossing fibers. On brain data, JARD yielded a smaller spread in FA along the corpus callosum compared to MLE. Tract-based spatial statistics demonstrated a higher sensitivity in detecting age-related white matter atrophy using JARD compared to both MLE and the ball-and-stick approach. Conclusions The proposed framework offers accurate and precise estimation of diffusion properties in single and dual fiber regions.

Original languageEnglish
Article numbere0164336
JournalPLoS ONE
Issue number10
Publication statusPublished - Oct 2016

Cite this