Renal Denervation Reduces Pulmonary Vascular Remodeling and Right Ventricular Diastolic Stiffness in Experimental Pulmonary Hypertension

Denielli da Silva Gonçalves Bos, Chris Happé, Ingrid Schalij, Wioletta Pijacka, Julian F.R. Paton, Christophe Guignabert, Ly Tu, Raphaël Thuillet, Harm Jan Bogaard, Albert C. van Rossum, Anton Vonk-Noordegraaf, Frances S. de Man, M. Louis Handoko*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Neurohormonal overactivation plays an important role in pulmonary hypertension (PH). In this context, renal denervation, which aims to inhibit the neurohormonal systems, may be a promising adjunct therapy in PH. In this proof-of-concept study, we have demonstrated in 2 experimental models of PH that renal denervation delayed disease progression, reduced pulmonary vascular remodeling, lowered right ventricular afterload, and decreased right ventricular diastolic stiffness, most likely by suppression of the renin-angiotensin-aldosterone system.

Original languageEnglish
Pages (from-to)22-35
Number of pages14
JournalJACC: Basic to Translational Science
Volume2
Issue number1
DOIs
Publication statusPublished - 2017

Cite this