Abstract
Synapse development requires spatiotemporally regulated recruitment of synaptic proteins. In this study, we describe a novel presynaptic mechanism of cis-regulated oligomerization of adhesion molecules that controls synaptogenesis. We identified synaptic adhesion-like molecule 1 (SALM1) as a constituent of the proposed presynaptic Munc18/CASK/Mint1/Lin7b organizer complex. SALM1 preferentially localized to presynaptic compartments of excitatory hippocampal neurons. SALM1 depletion in excitatory hippocampal primary neurons impaired Neurexin1β- and Neuroligin1-mediated excitatory synaptogenesis and reduced synaptic vesicle clustering, synaptic transmission, and synaptic vesicle release. SALM1 promoted Neurexin1β clustering in an F-actin- and PIP2-dependent manner. Two basic residues in SALM1's juxtamembrane polybasic domain are essential for this clustering. Together, these data show that SALM1 is a presynaptic organizer of synapse development by promoting F-actin/PIP2-dependent clustering of Neurexin.
Original language | English |
---|---|
Article number | e101289 |
Journal | EMBO Journal |
Volume | 38 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2 Sep 2019 |