TY - JOUR
T1 - Sensitivity and feasibility of a one-dimensional morphoelastic model for post-burn contraction
AU - Egberts, Ginger
AU - Vermolen, Fred
AU - van Zuijlen, Paul
N1 - Funding Information:
The authors are grateful for the financial support by the Dutch Burns Foundation under Project 17.105.
Publisher Copyright:
© 2021, The Author(s).
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/12
Y1 - 2021/12
N2 - We consider a one-dimensional morphoelastic model describing post-burn scar contraction. Contraction can lead to a limited range of motion (contracture). Reported prevalence of burn scar contractures are 58.6% at 3–6 weeks and 20.9% at 12 months post-reconstructive surgery after burns. This model describes the displacement of the dermal layer of the skin and the development of the effective Eulerian strain in the tissue. Besides these components, the model also contains components that play a major role in the skin repair after trauma. These components are signaling molecules, fibroblasts, myofibroblasts, and collagen. We perform a sensitivity analysis for many parameters of the model and use the results for a feasibility study. In this study, we test whether the model is suitable for predicting the extent of contraction in different age groups. To this end, we conduct an extensive literature review to find parameter values. From the sensitivity analysis, we conclude that the most sensitive parameters are the equilibrium collagen concentration in the dermal layer, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. Further, although we can use the model to simulate significant distinct contraction densities in different age groups, our results differ from what is seen in the clinic. This particularly concerns children and elderly patients. In children we see more intense contractures if the burn injury occurs near a joint, because the growth induces extra forces on the tissue. Elderly patients seem to suffer less from contractures, possibly because of excess skin.
AB - We consider a one-dimensional morphoelastic model describing post-burn scar contraction. Contraction can lead to a limited range of motion (contracture). Reported prevalence of burn scar contractures are 58.6% at 3–6 weeks and 20.9% at 12 months post-reconstructive surgery after burns. This model describes the displacement of the dermal layer of the skin and the development of the effective Eulerian strain in the tissue. Besides these components, the model also contains components that play a major role in the skin repair after trauma. These components are signaling molecules, fibroblasts, myofibroblasts, and collagen. We perform a sensitivity analysis for many parameters of the model and use the results for a feasibility study. In this study, we test whether the model is suitable for predicting the extent of contraction in different age groups. To this end, we conduct an extensive literature review to find parameter values. From the sensitivity analysis, we conclude that the most sensitive parameters are the equilibrium collagen concentration in the dermal layer, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. Further, although we can use the model to simulate significant distinct contraction densities in different age groups, our results differ from what is seen in the clinic. This particularly concerns children and elderly patients. In children we see more intense contractures if the burn injury occurs near a joint, because the growth induces extra forces on the tissue. Elderly patients seem to suffer less from contractures, possibly because of excess skin.
KW - Burns
KW - Feasibility
KW - Morphoelasticity
KW - Moving-grid finite-element
KW - Sensitivity
KW - Wound contraction
UR - http://www.scopus.com/inward/record.url?scp=85111510032&partnerID=8YFLogxK
U2 - 10.1007/s10237-021-01499-5
DO - 10.1007/s10237-021-01499-5
M3 - Article
C2 - 34331622
VL - 20
SP - 2147
EP - 2167
JO - Biomechanics and Modeling in Mechanobiology
JF - Biomechanics and Modeling in Mechanobiology
SN - 1617-7959
IS - 6
ER -