TY - JOUR
T1 - The amyloid imaging for the prevention of Alzheimer's disease consortium
T2 - A European collaboration with global impact
AU - Collij, Lyduine E.
AU - Farrar, Gill
AU - Valléz García, David
AU - Bader, Ilona
AU - Shekari, Mahnaz
AU - Lorenzini, Luigi
AU - Pemberton, Hugh
AU - Altomare, Daniele
AU - Pla, Sandra
AU - Loor, Mery
AU - Markiewicz, Pawel
AU - Yaqub, Maqsood
AU - Buckley, Christopher
AU - Frisoni, Giovanni B.
AU - Nordberg, Agneta
AU - Payoux, Pierre
AU - Stephens, Andrew
AU - Gismondi, Rossella
AU - Visser, Pieter Jelle
AU - Ford, Lisa
AU - Schmidt, Mark
AU - Birck, Cindy
AU - Georges, Jean
AU - Mett, Anja
AU - Walker, Zuzana
AU - Boada, Mercé
AU - Drzezga, Alexander
AU - Vandenberghe, Rik
AU - Hanseeuw, Bernard
AU - Jessen, Frank
AU - Schöll, Michael
AU - Ritchie, Craig
AU - the AMYPAD Consortium
AU - Lopes Alves, Isadora
AU - Gispert, Juan Domingo
AU - Barkhof, Frederik
N1 - Funding Information:
The project leading to this paper has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no. 115952. This Joint Undertaking receives the support from the European Union's Horizon 2020 research and innovation programme and EFPIA. FB was supported by the NIHR Biomedical Research Centre at UCLH. RV received funding related to this study from Stichting Alzheimer Onderzoek (#09013, #11020, #13007), Fund for Scientific Research (FWO) (G0G1519N), KU Leuven Bijzonder Onderzoeksfonds, and Vlaams Agentschap voor Innovatie en Onderzoek (#135043, #120835, #HBC.2019.2523).
Funding Information:
This process resulted in the largest European dataset phenotyping longitudinally individuals at risk of AD-related progression, which currently consists of ~3,350 subjects, ~1,600 of those with a baseline amyloid PET and about 940 of them having at least one follow-up PET acquisition. The dataset currently contains 9,740 observations (visits) and 614 variables, grouped into (68) “concepts” and (13) “domains,” such as demographics, family history, genetics, vital signs, medical history, neuropsychological questionnaires, lifestyle, CSF, PET and MRI. While current dataset has been developed using its own data model, tailored to the needs of the project, the AMYPAD PNHS has been selected to work with the European Health Data & Evidence Network (EHDEN) in the adoption of the OMOP data model. This will allow for the systematic analysis of the PNHS database, using a harmonize format as well as a common presentation of terminologies, vocabularies and coding schemes (EHDEN has received funding from the IMI 2 Join Undertaking under the grant agreement No 806968).
Publisher Copyright:
Copyright © 2023 Collij, Farrar, Valléz García, Bader, Shekari, Lorenzini, Pemberton, Altomare, Pla, Loor, Markiewicz, Yaqub, Buckley, Frisoni, Nordberg, Payoux, Stephens, Gismondi, Visser, Ford, Schmidt, Birck, Georges, Mett, Walker, Boada, Drzezga, Vandenberghe, Hanseeuw, Jessen, Schöll, Ritchie, Lopes Alves, Gispert and Barkhof.
PY - 2023/1/20
Y1 - 2023/1/20
N2 - Background: Amyloid-β (Aβ) accumulation is considered the earliest pathological change in Alzheimer's disease (AD). The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) consortium is a collaborative European framework across European Federation of Pharmaceutical Industries Associations (EFPIA), academic, and ‘Small and Medium-sized enterprises’ (SME) partners aiming to provide evidence on the clinical utility and cost-effectiveness of Positron Emission Tomography (PET) imaging in diagnostic work-up of AD and to support clinical trial design by developing optimal quantitative methodology in an early AD population. The AMYPAD studies: In the Diagnostic and Patient Management Study (DPMS), 844 participants from eight centres across three clinical subgroups (245 subjective cognitive decline, 342 mild cognitive impairment, and 258 dementia) were included. The Prognostic and Natural History Study (PNHS) recruited pre-dementia subjects across 11 European parent cohorts (PCs). Approximately 1600 unique subjects with historical and prospective data were collected within this study. PET acquisition with [18F]flutemetamol or [18F]florbetaben radiotracers was performed and quantified using the Centiloid (CL) method. Results: AMYPAD has significantly contributed to the AD field by furthering our understanding of amyloid deposition in the brain and the optimal methodology to measure this process. Main contributions so far include the validation of the dual-time window acquisition protocol to derive the fully quantitative non-displaceable binding potential (BPND), assess the value of this metric in the context of clinical trials, improve PET-sensitivity to emerging Aβ burden and utilize its available regional information, establish the quantitative accuracy of the Centiloid method across tracers and support implementation of quantitative amyloid-PET measures in the clinical routine. Future steps: The AMYPAD consortium has succeeded in recruiting and following a large number of prospective subjects and setting up a collaborative framework to integrate data across European PCs. Efforts are currently ongoing in collaboration with ARIDHIA and ADDI to harmonize, integrate, and curate all available clinical data from the PNHS PCs, which will become openly accessible to the wider scientific community.
AB - Background: Amyloid-β (Aβ) accumulation is considered the earliest pathological change in Alzheimer's disease (AD). The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) consortium is a collaborative European framework across European Federation of Pharmaceutical Industries Associations (EFPIA), academic, and ‘Small and Medium-sized enterprises’ (SME) partners aiming to provide evidence on the clinical utility and cost-effectiveness of Positron Emission Tomography (PET) imaging in diagnostic work-up of AD and to support clinical trial design by developing optimal quantitative methodology in an early AD population. The AMYPAD studies: In the Diagnostic and Patient Management Study (DPMS), 844 participants from eight centres across three clinical subgroups (245 subjective cognitive decline, 342 mild cognitive impairment, and 258 dementia) were included. The Prognostic and Natural History Study (PNHS) recruited pre-dementia subjects across 11 European parent cohorts (PCs). Approximately 1600 unique subjects with historical and prospective data were collected within this study. PET acquisition with [18F]flutemetamol or [18F]florbetaben radiotracers was performed and quantified using the Centiloid (CL) method. Results: AMYPAD has significantly contributed to the AD field by furthering our understanding of amyloid deposition in the brain and the optimal methodology to measure this process. Main contributions so far include the validation of the dual-time window acquisition protocol to derive the fully quantitative non-displaceable binding potential (BPND), assess the value of this metric in the context of clinical trials, improve PET-sensitivity to emerging Aβ burden and utilize its available regional information, establish the quantitative accuracy of the Centiloid method across tracers and support implementation of quantitative amyloid-PET measures in the clinical routine. Future steps: The AMYPAD consortium has succeeded in recruiting and following a large number of prospective subjects and setting up a collaborative framework to integrate data across European PCs. Efforts are currently ongoing in collaboration with ARIDHIA and ADDI to harmonize, integrate, and curate all available clinical data from the PNHS PCs, which will become openly accessible to the wider scientific community.
KW - Alzheimer's disease
KW - amyloid
KW - consortium
KW - diagnosis
KW - positron emission tomography (PET)
KW - prognosis
UR - http://www.scopus.com/inward/record.url?scp=85147763958&partnerID=8YFLogxK
U2 - 10.3389/fneur.2022.1063598
DO - 10.3389/fneur.2022.1063598
M3 - Review article
C2 - 36761917
SN - 1664-2295
VL - 13
JO - Frontiers in Neurology
JF - Frontiers in Neurology
M1 - 1063598
ER -