The identification of molecular drivers of disease and the compelling rise of biotherapeutics have impacted clinical care but have also come with challenges. Such therapeutics include peptides, monoclonal antibodies, antibody fragments and nontraditional binding scaffolds, activatable antibodies, bispecific antibodies, immunocytokines, antibody-drug conjugates, enzymes, polynucleotides, and therapeutic cells, as well as alternative drug carriers such as nanoparticles. Drug development is expensive, attrition rates are high, and efficacy rates are lower than desired. Almost all these drugs, which in general have a long residence time in the body, can stably be labeled with 89Zr for whole-body PET imaging and quantification. Although not restricted to monoclonal antibodies, this approach is called 89Zr-immuno-PET. This review summarizes the state of the art of the technical aspects of 89Zr-immuno-PET and illustrates why it has potential for steering the design, development, and application of biologic drugs. Appealing showcases are discussed to illustrate what can be learned with this emerging technology during preclinical and especially clinical studies about biologic drug formats and disease targets. In addition, an overview of ongoing and completed clinical trials is provided. Although 89Zr-immuno-PET is a young tool in drug development, its application is rapidly expanding, with first clinical experiences giving insight on why certain drug-target combinations might have better perspectives than others.
Original languageEnglish
Pages (from-to)438-445
Number of pages8
JournalJournal of Nuclear Medicine
Issue number4
Early online date4 Dec 2020
Publication statusPublished - 1 Apr 2021

Cite this