TY - JOUR
T1 - Toward a new generation of pelvic floor implants with electrospun nanofibrous matrices
T2 - A feasibility study
AU - Vashaghian, Mahshid
AU - Ruiz-Zapata, Alejandra M.
AU - Kerkhof, Manon H.
AU - Zandieh-Doulabi, Behrouz
AU - Werner, Arie
AU - Roovers, Jan Paul
AU - Smit, Theo H.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Objective: The use of knitted, polypropylene meshes for the surgical treatment of pelvic organ prolapse (POP) is frequently accompanied by severe complications. Looking for alternatives, we studied the potential of three different electrospun matrices in supporting the adhesion, proliferation, and matrix deposition of POP and non-POP fibroblasts, the most important cells to produce extracellular matrix (ECM), in vitro. Study design: We electrospun three commonly used medical materials: nylon; poly (lactide-co-glycolide) blended with poly-caprolactone (PLGA/PCL); and poly-caprolactone blended with gelatin (PCL/Gelatin). The matrices were characterized for their microstructure, hydrophilicity, and mechanical properties. We seeded POP and non-POP fibroblasts from patients with POP and we determined cellular responses and ECM deposition. Results: All matrices had >65% porosity, homogenous microstructures, and close to sufficient tensile strength for pelvic floor repair: 15.4 ± 3.3 MPa for Nylon; 12.4 ± 1.6 MPa for PLGA/PCL; and 3.5 ± 0.9 MPa for PCL/Gelatin. Both the POP and non-POP cells adhered to the electrospun matrices; they proliferated well and produced ample ECM. Overall, the best in vitro performance appeared to be on nylon, presumably because this was the most hydrophilic material with the thinnest fibers. Conclusion: Electrospun nanofibrous matrices show feasible mechanical strength and great biocompatibility for POP and non-POP fibroblasts to produce their ECM in vitro and, thus, may be candidates for a new generation of implants for pelvic floor repair. Further studies on electrospun nanofibrous matrices should focus on mechanical and immunological conditions that would be presented in vivo. Neurourol. Urodynam. 36:565–573, 2017.
AB - Objective: The use of knitted, polypropylene meshes for the surgical treatment of pelvic organ prolapse (POP) is frequently accompanied by severe complications. Looking for alternatives, we studied the potential of three different electrospun matrices in supporting the adhesion, proliferation, and matrix deposition of POP and non-POP fibroblasts, the most important cells to produce extracellular matrix (ECM), in vitro. Study design: We electrospun three commonly used medical materials: nylon; poly (lactide-co-glycolide) blended with poly-caprolactone (PLGA/PCL); and poly-caprolactone blended with gelatin (PCL/Gelatin). The matrices were characterized for their microstructure, hydrophilicity, and mechanical properties. We seeded POP and non-POP fibroblasts from patients with POP and we determined cellular responses and ECM deposition. Results: All matrices had >65% porosity, homogenous microstructures, and close to sufficient tensile strength for pelvic floor repair: 15.4 ± 3.3 MPa for Nylon; 12.4 ± 1.6 MPa for PLGA/PCL; and 3.5 ± 0.9 MPa for PCL/Gelatin. Both the POP and non-POP cells adhered to the electrospun matrices; they proliferated well and produced ample ECM. Overall, the best in vitro performance appeared to be on nylon, presumably because this was the most hydrophilic material with the thinnest fibers. Conclusion: Electrospun nanofibrous matrices show feasible mechanical strength and great biocompatibility for POP and non-POP fibroblasts to produce their ECM in vitro and, thus, may be candidates for a new generation of implants for pelvic floor repair. Further studies on electrospun nanofibrous matrices should focus on mechanical and immunological conditions that would be presented in vivo. Neurourol. Urodynam. 36:565–573, 2017.
KW - electrospinning
KW - extracellular matrix
KW - nanofibrous matrices
KW - pelvic organ prolapse
KW - vaginal fibroblasts
UR - http://www.scopus.com/inward/record.url?scp=84959036644&partnerID=8YFLogxK
U2 - 10.1002/nau.22969
DO - 10.1002/nau.22969
M3 - Article
C2 - 26840206
AN - SCOPUS:84959036644
SN - 0733-2467
VL - 36
SP - 565
EP - 573
JO - Neurorology and Urodynamics
JF - Neurorology and Urodynamics
IS - 3
ER -