Unaltered instrumental learning and attenuated body-weight gain in rats during non-rotating simulated shiftwork

C. H.C. Leenaars, A. Kalsbeek, M. A.J. Hanegraaf, E. Foppen, R. N.J.M.A. Joosten, G. Post, M. Dematteis, M. G.P. Feenstra, E. J.W. Van Someren

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Exposure to shiftwork has been associated with multiple health disorders and cognitive impairments in humans. We tested if we could replicate metabolic and cognitive consequences of shiftwork, as reported in humans, in a rat model comparable to 5 wks of non-rotating night shifts. The following hypotheses were addressed: (i) shiftwork enhances body-weight gain, which would indicate metabolic effects; and (ii) shiftwork negatively affects learning of a simple goal-directed behavior, i.e., the association of lever pressing with food reward (instrumental learning), which would indicate cognitive effects. We used a novel method of forced locomotion to model work during the animals' normal resting period. We first show that Wistar rats, indeed, are active throughout a shiftwork protocol. In contrast with previous findings, the shiftwork protocol attenuated the normal weight gain to 76±8g in 5 wks as compared to 123±15g in the control group. The discrepancy with previous work may be explained by the concurrent observation that with our shiftwork protocol rats did not adjust their between-work circadian activity pattern. They maintained a normal level of activity during the "off-work" periods. In the control experiment, rats were kept active during the dark period, normally dominated by activity. This demonstrated that forced activity, per se, did not affect body-weight gain (mean±SEM: 85±11g over 5 wks as compared to 84±11g in the control group). Rats were trained on an instrumental learning paradigm during the fifth week of the protocol. All groups showed equivalent increases in lever pressing from the first (3.8±.7) to the sixth (21.3±2.4) session, and needed a similar amount of sessions (5.1±.3) to reach a learning criterion (≥27 out of 30 lever presses). These results suggest that while on prolonged non-rotating shiftwork, not fully reversing the circadian rhythm might actually be beneficial to prevent body-weight gain and cognitive impairments.

Original languageEnglish
Pages (from-to)344-355
Number of pages12
JournalChronobiology International
Volume29
Issue number3
DOIs
Publication statusPublished - 1 Apr 2012

Cite this

Leenaars, C. H.C. ; Kalsbeek, A. ; Hanegraaf, M. A.J. ; Foppen, E. ; Joosten, R. N.J.M.A. ; Post, G. ; Dematteis, M. ; Feenstra, M. G.P. ; Van Someren, E. J.W. / Unaltered instrumental learning and attenuated body-weight gain in rats during non-rotating simulated shiftwork. In: Chronobiology International. 2012 ; Vol. 29, No. 3. pp. 344-355.
@article{29c9791d0b8f47c5904c1c138fbe6368,
title = "Unaltered instrumental learning and attenuated body-weight gain in rats during non-rotating simulated shiftwork",
abstract = "Exposure to shiftwork has been associated with multiple health disorders and cognitive impairments in humans. We tested if we could replicate metabolic and cognitive consequences of shiftwork, as reported in humans, in a rat model comparable to 5 wks of non-rotating night shifts. The following hypotheses were addressed: (i) shiftwork enhances body-weight gain, which would indicate metabolic effects; and (ii) shiftwork negatively affects learning of a simple goal-directed behavior, i.e., the association of lever pressing with food reward (instrumental learning), which would indicate cognitive effects. We used a novel method of forced locomotion to model work during the animals' normal resting period. We first show that Wistar rats, indeed, are active throughout a shiftwork protocol. In contrast with previous findings, the shiftwork protocol attenuated the normal weight gain to 76±8g in 5 wks as compared to 123±15g in the control group. The discrepancy with previous work may be explained by the concurrent observation that with our shiftwork protocol rats did not adjust their between-work circadian activity pattern. They maintained a normal level of activity during the {"}off-work{"} periods. In the control experiment, rats were kept active during the dark period, normally dominated by activity. This demonstrated that forced activity, per se, did not affect body-weight gain (mean±SEM: 85±11g over 5 wks as compared to 84±11g in the control group). Rats were trained on an instrumental learning paradigm during the fifth week of the protocol. All groups showed equivalent increases in lever pressing from the first (3.8±.7) to the sixth (21.3±2.4) session, and needed a similar amount of sessions (5.1±.3) to reach a learning criterion (≥27 out of 30 lever presses). These results suggest that while on prolonged non-rotating shiftwork, not fully reversing the circadian rhythm might actually be beneficial to prevent body-weight gain and cognitive impairments.",
keywords = "Activity, Body-weight gain, Circadian phase, Cognition, Instrumental learning, Night shift, Shiftwork, Sleep",
author = "Leenaars, {C. H.C.} and A. Kalsbeek and Hanegraaf, {M. A.J.} and E. Foppen and Joosten, {R. N.J.M.A.} and G. Post and M. Dematteis and Feenstra, {M. G.P.} and {Van Someren}, {E. J.W.}",
year = "2012",
month = "4",
day = "1",
doi = "10.3109/07420528.2011.654018",
language = "English",
volume = "29",
pages = "344--355",
journal = "Chronobiology International",
issn = "0742-0528",
publisher = "Informa Healthcare",
number = "3",

}

Leenaars, CHC, Kalsbeek, A, Hanegraaf, MAJ, Foppen, E, Joosten, RNJMA, Post, G, Dematteis, M, Feenstra, MGP & Van Someren, EJW 2012, 'Unaltered instrumental learning and attenuated body-weight gain in rats during non-rotating simulated shiftwork' Chronobiology International, vol. 29, no. 3, pp. 344-355. https://doi.org/10.3109/07420528.2011.654018

Unaltered instrumental learning and attenuated body-weight gain in rats during non-rotating simulated shiftwork. / Leenaars, C. H.C.; Kalsbeek, A.; Hanegraaf, M. A.J.; Foppen, E.; Joosten, R. N.J.M.A.; Post, G.; Dematteis, M.; Feenstra, M. G.P.; Van Someren, E. J.W.

In: Chronobiology International, Vol. 29, No. 3, 01.04.2012, p. 344-355.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Unaltered instrumental learning and attenuated body-weight gain in rats during non-rotating simulated shiftwork

AU - Leenaars, C. H.C.

AU - Kalsbeek, A.

AU - Hanegraaf, M. A.J.

AU - Foppen, E.

AU - Joosten, R. N.J.M.A.

AU - Post, G.

AU - Dematteis, M.

AU - Feenstra, M. G.P.

AU - Van Someren, E. J.W.

PY - 2012/4/1

Y1 - 2012/4/1

N2 - Exposure to shiftwork has been associated with multiple health disorders and cognitive impairments in humans. We tested if we could replicate metabolic and cognitive consequences of shiftwork, as reported in humans, in a rat model comparable to 5 wks of non-rotating night shifts. The following hypotheses were addressed: (i) shiftwork enhances body-weight gain, which would indicate metabolic effects; and (ii) shiftwork negatively affects learning of a simple goal-directed behavior, i.e., the association of lever pressing with food reward (instrumental learning), which would indicate cognitive effects. We used a novel method of forced locomotion to model work during the animals' normal resting period. We first show that Wistar rats, indeed, are active throughout a shiftwork protocol. In contrast with previous findings, the shiftwork protocol attenuated the normal weight gain to 76±8g in 5 wks as compared to 123±15g in the control group. The discrepancy with previous work may be explained by the concurrent observation that with our shiftwork protocol rats did not adjust their between-work circadian activity pattern. They maintained a normal level of activity during the "off-work" periods. In the control experiment, rats were kept active during the dark period, normally dominated by activity. This demonstrated that forced activity, per se, did not affect body-weight gain (mean±SEM: 85±11g over 5 wks as compared to 84±11g in the control group). Rats were trained on an instrumental learning paradigm during the fifth week of the protocol. All groups showed equivalent increases in lever pressing from the first (3.8±.7) to the sixth (21.3±2.4) session, and needed a similar amount of sessions (5.1±.3) to reach a learning criterion (≥27 out of 30 lever presses). These results suggest that while on prolonged non-rotating shiftwork, not fully reversing the circadian rhythm might actually be beneficial to prevent body-weight gain and cognitive impairments.

AB - Exposure to shiftwork has been associated with multiple health disorders and cognitive impairments in humans. We tested if we could replicate metabolic and cognitive consequences of shiftwork, as reported in humans, in a rat model comparable to 5 wks of non-rotating night shifts. The following hypotheses were addressed: (i) shiftwork enhances body-weight gain, which would indicate metabolic effects; and (ii) shiftwork negatively affects learning of a simple goal-directed behavior, i.e., the association of lever pressing with food reward (instrumental learning), which would indicate cognitive effects. We used a novel method of forced locomotion to model work during the animals' normal resting period. We first show that Wistar rats, indeed, are active throughout a shiftwork protocol. In contrast with previous findings, the shiftwork protocol attenuated the normal weight gain to 76±8g in 5 wks as compared to 123±15g in the control group. The discrepancy with previous work may be explained by the concurrent observation that with our shiftwork protocol rats did not adjust their between-work circadian activity pattern. They maintained a normal level of activity during the "off-work" periods. In the control experiment, rats were kept active during the dark period, normally dominated by activity. This demonstrated that forced activity, per se, did not affect body-weight gain (mean±SEM: 85±11g over 5 wks as compared to 84±11g in the control group). Rats were trained on an instrumental learning paradigm during the fifth week of the protocol. All groups showed equivalent increases in lever pressing from the first (3.8±.7) to the sixth (21.3±2.4) session, and needed a similar amount of sessions (5.1±.3) to reach a learning criterion (≥27 out of 30 lever presses). These results suggest that while on prolonged non-rotating shiftwork, not fully reversing the circadian rhythm might actually be beneficial to prevent body-weight gain and cognitive impairments.

KW - Activity

KW - Body-weight gain

KW - Circadian phase

KW - Cognition

KW - Instrumental learning

KW - Night shift

KW - Shiftwork

KW - Sleep

UR - http://www.scopus.com/inward/record.url?scp=84858200243&partnerID=8YFLogxK

U2 - 10.3109/07420528.2011.654018

DO - 10.3109/07420528.2011.654018

M3 - Article

VL - 29

SP - 344

EP - 355

JO - Chronobiology International

JF - Chronobiology International

SN - 0742-0528

IS - 3

ER -