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HEAD AND NECK CANCER; EPIDEMIOLOGY, RISK FACTORS AND CARCINOGENESIS

Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal linings of the oral 
cavity, naso-, hypo-, and oropharynx, and larynx. HNSCCs represent over 90% of all malignant 
tumors in the upper aerodigestive tract. According to the latest update of the GLOBOCAN 
project (globocan.iarc.fr), HNSCC is the eighth most frequently diagnosed cancer type and the 
sixth leading cause of cancer deaths worldwide(1). Despite advances in the treatment of HNSCC, 
development of locoregional recurrences, distant metastases and second primary tumors still 
occur frequently(2), leading to ϐive-year survival rates after diagnosis that have remained around 
50% during the last decades.
The two most important risk factors for the development of HNSCC are tobacco use and excessive 
alcohol consumption(3), and these seem to have a more than additive effect(4). In addition, 
epidemiological studies report that a subset of HNSCCs, i.e. malignancies of the oropharynx, is 
caused by infection with the human papillomavirus (HPV)(5-7). Finally, certain inherited genetic 
disorders, like Fanconi anemia, predispose affected individuals to the development of HNSCC(8,9).
HNSCCs usually develop in prenoplastic mucosal changes that in some cases may be visible 
macroscopically as white (leukoplakia) or red (erythroplakia) lesions. The large majority 
of these preneoplastic changes is recognized microscopically as dysplasia, and is graded as 
mild, moderate or severe. In 1996, Califano et al.(10) described the ϐirst progression model of 
HNSCC and showed that a number of genetic changes accumulate in parallel with the severity 
of the dysplastic changes. The initial model has been adapted, simpliϐied, and integrated with 
the most critical molecular changes(2). Early genetic changes are mutation of TP53 and loss of 
chromosome arm 17p, mutation or methylation of the CDKN2A gene (encoding p16INK4A) with 
loss of chromosome arm 9p, and ampliϐication of chromosome 11q13 with the CCND1 (cyclin 
D1) gene. Later changes encompass the gain of chromosome arm 3q (PIK3CA gene), loss of 10q 
(PTEN gene) and ampliϐication of 7p (EGFR gene). Also frequent losses of 18q are reported 
(SMAD4 gene)(2). Next generation sequencing studies revealed frequent inactivating mutations 
in TP53, CDKN2A, NOTCH1, FAT1, CASP8 and PTEN as well as activating mutations in PIK3CA and 
HRAS(11,12).
Of note, these genetic changes are typical for HPV-negative HNSCC. The subgroup of tumors 
caused by human papillomavirus infections show very distinct molecular characteristics, with 
generally less genetic changes and gene mutations.

Human papillomavirus
Human papillomaviruses (HPVs) are circular double-stranded DNA viruses that speciϐically 
infect the basal cells of epithelial mucosa. Over 120 HPV subtypes have been identiϐied, some 
of which are involved in carcinogenesis(13,14). These so-called high-risk HPV types, e.g. HPV-16 
and HPV-18, can transform squamous epithelial cells through expression of the viral oncogenes 
E6 and E7(15-17). Viral oncoprotein E6 binds to the tumor suppressor protein p53(18), and targets 
p53 for degradation. Similarly, the HPV E7 protein targets the retinoblastoma protein RB 
(pRB) for degradation(19), leading to the release of transcription factors that create an S-phase 
environment in differentiating cells to allow viral replication. Together, the HPV E6 and E7 viral 
oncoproteins induce and maintain an uncontrolled proliferative condition in squamous cells, 
which might eventually result in genetic instability and cancer.
Recent studies have shown that HPV-positive tumors represent a distinct subgroup of 
HNSCCs. These tumors mainly develop in the oropharyngeal region and differ markedly from 
HPV-negative tumors with respect to aetiology, stage, age of onset, prognosis, and molecular 
alterations(2). From a clinical point of view, HPV-positive tumors are associated with a more 
favorable prognosis than HPV-negative HNSCCs(20-26). As indicated above, most HPV-negative 
tumors harbor a mutation in TP53(27,28), but since the HPV E6 oncogene inhibits p53 function, 
mutations in TP53 are infrequent in HPV-positive tumors(5,11,29). In addition, it has been shown 
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that HPV-associated HNSCCs overexpress p16INK4A (28,29), while in HPV-negative tumors p16INK4A 
is usually inactivated by mutation, homozygous loss or hypermethylation. This makes p16INK4A 
expression a reliable surrogate marker for HPV-infected tumors. Expression of p16INK4A is 
usually analyzed by immunohistochemistry. HPV is usually detected by (quantitative) DNA 
PCR or in situ hybridization, but these assays are not always accurate particularly on archival 
specimen(30-32). Therefore test algorithms have been developed such as p16INK4A-immunostaining 
followed by DNA PCR on the positive cases(33). These test algorithms may have an accuracy of 
98%(34), and are much more reliable than single assays.

Fanconi anemia
Besides exposure to exogenous risk factors, there is a genetic susceptibility or predisposition 
for the development of head and neck cancer. The most prominent predisposition syndrome 
causing HNSCC is Fanconi anemia (FA). FA is a rare autosomal recessive disorder, which is 
clinically characterized by congenital malformations, short stature, progressive bone marrow 
failure, endocrine abnormalities and cancer predisposition. The FA syndrome is caused by 
mutations in one of at least 16 genes (FANCA/B/C/D1/D2/E/F/G/I/J/L/M/N/O/P/Q) that 
work in a complex as part of the FA/BRCA DNA damage response pathway(35-38). Most FA proteins 
are components of the so-called FA core complex, which activates FANCD2 and FANCI by mono-
ubiquitination upon DNA damage. The complex is activated by ATR when a replication fork stalls 
during DNA replication as a result of a DNA crosslink. The activated FA proteins subsequently 
localize to the site of DNA damage and recruit a wide variety of other DNA repair proteins, 
like BRCA2/FANCD1 and RAD51, to jointly restore the DNA by translesion polymerases and 
homologous recombination.
As a consequence of improper functioning of one of the FA genes, cells of FA patients show high 
sensitivity to DNA crosslinks. This results in defective maintenance of genome integrity and 
severe chromosomal instability, represented by multiple chromosomal breaks and accumulation 
of DNA adducts, especially after treatment with agents that damage DNA by inducing DNA 
crosslinks(39,40). This chromosomal instability might explain the cancer predisposition seen in 
FA individuals. 
Patients suffering from FA are susceptible to develop haematological malignancies, particularly 
acute myeloid leukemias, as well as squamous cell carcinomas, which mainly tend to arise in the 
head and neck and anogenital regions(8,41,42). It was estimated that FA patients have a more than 
700-fold higher risk to develop HNSCC than the normal population(43,44), and a 2000-fold higher 
risk of developing oesophageal cancer(45). Moreover, these tumors present mostly without 
exposure to the commonly known HNSCC risk factors(8) and at a very young age (median age 
of 16 vs. 62 in the general population(41)). HNSCC treatment options for these patients are 
limited, since FA cells are hypersensitive to DNA damage inducing therapies, in particular DNA 
crosslinking agents, such as cisplatin and mitomycin C(36,46,47).

HNSCC TREATMENT 

The treatment plan for HNSCC depends on the stage of disease. Early stage HNSCCs are mostly 
treated with surgery or radiotherapy. Surgical resection of tumors in the head and neck area 
is often challenging, since conservation of speech and swallowing is desired. For this reason, 
radiotherapy is sometimes preferred over surgery, and cure rates proved to be as good as those 
for surgery(48-50). 
In the more advanced stages of disease a multimodality approach is required and surgery 
is frequently combined with (postoperative) radiotherapy. Furthermore, chemotherapy is 
increasingly part of the treatment scheme. Chemotherapy can be applied in a neoadjuvant 
setting, e.g. as induction chemotherapy prior to surgery. However, a large randomized phase 
III trial(51) recently showed that induction chemotherapy does not improve clinical outcome 
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and this treatment protocol is currently under debate. Chemotherapy can also be applied in 
an adjuvant (post-operative) setting, and effectively improves survival in many tumor types. 
However, the MACH-NC Collaborative Group (Meta-Analysis of Chemotherapy on Head and 
Neck Cancer) compared data of studies with or without chemotherapy in HNSCC patients in 
randomized trials(52) and found that the application of chemotherapy as an adjuvant treatment 
does not give a signiϐicant survival beneϐit in this cancer type.
In contrast, the concomitant administration of the chemotherapeutic agent cisplatin combined 
with locoregional radiotherapy, called chemoradiation, is associated with a signiϐicant survival 
beneϐit(53). This approach has been adopted increasingly over the past years in an effort to 
improve clinical outcome and to preserve vital organs(54). Although effective, the application of 
these chemoradiation protocols may have severe side effects(55-57), causing acute and long term 
sequelae, and hampering quality of life. 
Recent research focused on the molecular characteristics of cancer cells and resulted in the 
development of therapies that speciϐically target the cancer cells. For example, the application 
of the epidermal growth factor receptor (EGFR) targeting drug cetuximab in the treatment 
of HNSCCs is justiϐied by the fact that more than 90% of HNSCCs overexpress EGFR(58). 
Targeted agents, such as cetuximab, are generally less toxic than the more classical cytotoxic 
chemotherapeutics, and can therefore be applied to patients unϐit for chemoradiation. The 
addition of cetuximab to radiotherapy protocols, called bioradiotherapy, improves locoregional 
control(59) and the 5-years overall survival rate(60). However, increasing evidence suggests 
that patients who initially show a promising response to EGFR inhibition eventually become 
refractory(61,62). 
Therapy resistance is a major obstacle in successfully treating HNSCC. It would be ideal to be able 
to predict upfront whether or not a tumor will respond to chemoradiation or bioradiotherapy, 
since a realistic alternative (surgery with or without radiotherapy) is often at hand. The 
development of such more personalized treatment approaches requires the identiϐication of 
biomarkers that predict response to a certain treatment. 

RESISTANCE TO TREATMENT

Resistance limits the clinical success of the most effective anticancer therapies. Tumor cells 
may be insensitive to the therapy from the start (intrinsic resistance) or cells may develop 
insensitivity to the treatment (acquired resistance). Resistance to treatment, either to cisplatin 
or radiotherapy, may result from a variety of factors.

Insuf icient DNA binding
Platinum-containing chemotherapeutic drugs, like cisplatin and carboplatin, exert their 
intracellular cytotoxic effect by covalently binding to the DNA. The cellular processing of 
platinum provided important insights into the molecular mechanisms involved in the cisplatin 
response (reviewed in refs. (63,64)). 
Cisplatin is able to enter a cell via passive diffusion, but this process is very slow and depends on 
multiple factors such as sodium and potassium concentrations and pH(65). Additionally, several 
transporters and gated channels have been identiϐied that play a role in both cisplatin inϐlux 
and efϐlux. Especially the observation that ϐluctuations in cellular cisplatin concentrations are 
paralleled by similar changes in copper, led researchers to the ϐield of copper homeostasis. The 
copper transporter-1 (CTR1) was identiϐied as an important cisplatin inϐlux transporter(66-70). 
Furthermore, copper efϐlux transporters ATP7A(68,71), and ATP7B(68,72-74), as well as members of 
the organic cation transporter (OCT) family(75), were identiϐied to play a role in cisplatin efϐlux. 
Clinically, increased expression of these copper efϐlux proteins or decreased expression of inϐlux 
transporters has been correlated to poor outcome in several tumor types, including HNSCC(76,77).
Once inside the cell, cisplatin undergoes aquation(63,78). During this process, the molecule 

Chapter 1



13

1
looses the chloride groups as a result of the low intracellular chloride concentration. The 
hydrolyzed form of cisplatin binds to many cellular targets, but its reaction with the nuclear 
DNA is biologically the most relevant. The platinum atom covalently binds to the DNA and 
forms intrastrand, and to a lesser extent interstrand crosslinks(79). These platinum-DNA adducts 
distort the structure of the DNA, leading to stalling of replication forks during the process of DNA 
replication. This can only be resolved by breakage of the DNA strands. Double-strand breaks are 
particularly hazardous to the cell and require appropriate repair. Inappropriate repair may lead 
to genome rearrangements and frequently to cell death. Upon detection of the cisplatin-induced 
DNA damage, a cell goes into growth arrest to allow repair of the damage. When damage is too 
extensive to repair, a cell undergoes programmed cell death, and this is desired when treating 
cancer patients. On the other hand, cells may survive the toxic DNA damage by either tolerating 
the DNA damage(80-83) or by increasing the DNA repair activities that lead to the removal of 
cisplatin adducts.

Increased DNA repair
Several different DNA repair pathways are evolutionary highly conserved. Intrastrand platinum-
DNA adducts can for instance be repaired by nucleotide excision repair (NER)(84). During this 
process, the adduct is removed by DNA incision, ϐilling of the created gap by complementation 
of the undamaged DNA strand and eventually ligation. ERCC1 is one of the key factors in the 
NER system, and low ERCC1 expression, i.e. low NER activity, was identiϐied as a predictive 
marker for successful cisplatin treatment in several types of cancer, including HNSCC(85,86). 
However, interstrand crosslinks cause stalled replication forks during DNA replication, which 
eventually result in double-stranded DNA breaks. Two pathways are of importance in the repair 
of such double-stranded DNA damage, homologous recombination (HR) and nonhomologous 
end-joining (NHEJ). Initiation of both DNA repair pathways requires the detection of the actual 
DNA damage, which is the responsible task of ATM (double strand breaks) and ATR (stalled 
replication forks). Both proteins proved to be essential in establishing a good DNA repair 
response(87,88). The main difference between the two DNA repair processes is that HR requires 
an undamaged template strand containing a homologous DNA sequence. This DNA strand is 
only available in the S- and G2 phase of the cell cycle. In contrast, during NHEJ two double-
stranded DNA ends are joined, independent of the presence of complementary DNA strands 
and regardless of the correct repositioning of the genetic material. As a result, NHEJ may repair 
DNA damage in all phases of the cell cycle, but is error-prone compared to HR. Not only cell cycle 
phase determines which double-stranded DNA damage repair pathway is utilized, but there are 
indications that also the type of damage requests repair by a speciϐic pathway. Deϐiciencies in 
FA proteins, especially BRCA1 and BRCA2, impair HR and sensitize cells to DNA crosslinking 
agents such as cisplatin(89,90). On the contrary, mutations in NHEJ associated genes lead to greater 
radiation sensitivity(91,92). 
Non-cancerous cells likely suffer less from radiation or cisplatin treatment compared to cancer 
cells, probably as a result of functional DNA damage pathways and correct regulation of the cell 
cycle. Recent studies identiϐied a small subpopulation within a tumor that seems to have similar 
therapy-resistant traits. 

Cancer stem cells
The processes of initiation, progression and recurrence of cancer have been extensively studied, 
and this led to the development of two models. The stochastic model hypothesizes that every 
cell within a tumor is able to maintain tumor growth and to initiate a new tumor. Individual 
mutations that are caused by intrinsic and environmental factors provide certain cells with a 
small survival beneϐit over the other cells, but in principle, all cells are genetically equivalent. In 
contrast, according to the hierarchical model, only a small subset of cells, i.e. the cancer stem cells 
(CSCs), is able to initiate tumor growth. CSCs are self-renewing and have the exclusive ability 
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to give rise to all differentiated progeny that makes up the bulk of the tumor. As a consequence 
it has been postulated that distant metastases are formed by CSCs that disseminated from the 
tumor. In addition, local recurrences are thought to be a result of residual CSCs after treatment. 
CSCs from multiple solid tumor types have been isolated based on differential expression of 
protein markers on the cell membrane. Recent studies identiϐied such a CSC population in 
HNSCC which is based on the expression of the hyaluronic acid receptor CD44. It was shown 
that isolated CD44+ cells gave rise to new tumors in vivo in mouse models, whereas CD44- cells 
could not(93). This study, and thereafter many others(94-98), supports the CSC concept in HNSCC, 
although there is still debate on the usefulness of CD44 as a HNSCC CSC marker. This is the 
result of the abundance and the location of CD44 expression observed in HNSCC. In mucosal 
epithelium the normal stem cells are assumed to reside in the basal layer. This is the place 
where cell division takes place, while the cells differentiate in the suprabasal layers. This 
ultimately leads to the terminally differentiated squames that have lost all cell organelles and 
form a protective layer(99). As differentiated tumors form comparable mucosal-like structures, 
it is assumed that also the cells with stem cell capacities reside in these basal layers. However, 
it was shown in several studies that the CD44 protein is not only present on the basal cells but 
also on the suprabasal cells, both on normal and malignant squamous tissues(100-104), suggesting 
that CD44 is not the best available CSC marker.
Several lines of evidence suggest that vital processes are tightly regulated in CSCs. The 
CSC population is slowly cycling, providing the opportunity for accurate maintenance of 
DNA integrity. Also, proteins involved in DNA repair systems are adequately represented. 
Furthermore, CSCs express high levels of active detoxiϐication pumps to quickly eliminate toxic 
compounds from the cell(105). These characteristics led to the hypothesis that CSCs are highly 
resistant to the general anticancer treatments, such as radiotherapy and chemotherapy, and, 
consequently, that treatment failure might be explained by ineffective killing of the CSCs(106). 
The identiϐication of the HNSCC CSC population, and close examination of these cells, might 
lead to the development of treatments that speciϐically eliminate the CSCs. In theory, this will 
result in the complete eradication of the tumor, since CSCs are thought to maintain the tumor 
and to drive tumor growth. Until such therapies are available, clinicians aim to treat patients 
with the most effective treatment that causes the least side effects. For this reason, many studies 
aim to ϐind tumor biomarkers that are able to predict upfront whether or not a tumor will be 
responsive to a certain treatment.

PERSONALIZED CHEMORADIATION

Cisplatin is an effective addition to radiation protocols, but the major limitation of its use is the 
often marked toxicity. Patients need to be hospitalized for a few days after cisplatin infusion 
and complications that require extra hospitalization are frequent. This is a large burden for the 
patient and associated health care costs. Another, less toxic agent, might at some time replace 
cisplatin. Cetuximab in combination with radiotherapy (bioradiation) may be a ϐirst possibility. 
However, bioradiation has not been compared to chemoradiation in a randomized trial. In 
addition cetuximab is at present very expensive, hampering clinical implementation. 
Although chemoradiation is effective, several tumors do not respond well to this combination 
of cisplatin and radiotherapy. As there might be an alternative treatment, surgery with 
postoperative radiotherapy, response prediction is an important issue. Major research efforts 
aim to ϐind clinical and/or biomolecular markers to predict chemoradiation response of HNSCC. 
The only clinical factor that shows some predictive value for chemoradiotherapy outcome of 
HNSCC proved to be primary tumor volume(107-114), but not all studies could conϐirm this(115). 
Furthermore, as described above, it is well known that HPV-positive HNSCCs have a relatively 
favorable prognosis irrespective of treatment(20,116) and there is ongoing debate whether HPV-
positive HNSCCs should not be treated by de-intensiϐied protocols. This might turn HPV into a 
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prognostic factor that determines clinical management of HNSCC. 
Using a candidate gene or protein approach several molecular markers have been studied to 
predict platinum-based chemotherapy and/or radiotherapy outcome in head and neck cancer 
patients. Examples of such genes are mutations in TP53(117-119) and expression of ERCC1(85,86,120-

123), but contradictory reports have been published and none of these markers have made it to the 
clinic. Other groups have exploited microarray technology to determine an expression proϐile 
that predicts treatment response in head and neck cancer(115,124-131), but reported predictive 
proϐiles have not been validated.
There are several explanations for the fact that there is still no good predictor for chemoradiation 
response. First, most studies were performed on material derived from patients who were 
treated with multimodality therapy. Poor response to radiation might thus be compensated 
by good response to cisplatin and vice versa. Second, biomarker identiϐication is mainly 
performed using sections of parafϐin-embedded material or small tumor biopsies. The non-
cancerous cells that are also present in these samples might blur the tumor proϐile, and small 
biopsies might not reϐlect all clones in a tumor. In addition, the molecular characteristics of 
other small subpopulations, like CSCs, will not be detected, whilst they might be highly relevant 
for treatment outcome (see above). Third, genetic alterations that cause protein inactivation or 
hyperactivation might not be detected by microarray-analysis or immunohistochemical analysis 
when the mutated protein is expressed at more or less normal levels. Finally, although many 
candidate biomarkers have been suggested in other tumor types, their predictive value might 
not be extrapolated to HNSCC. This emphasizes the need for in-depth examination of HNSCC 
CSCs and a gene-by-gene assessment of its inϐluence on tumor response to treatment with a 
single therapy. This may result in the identiϐication of genes that might serve as a biomarker for 
response, and, in addition, may be exploited to sensitize the tumor for drugs or radiation.

HIGH-THROUGHPUT IDENTIFICATION OF NOVEL DRUG TARGETS

New insights in biology and improvements in biotechnology have led to the development of new 
research tools. It has become relatively easy to interfere with complex cellular processes, even 
on the genetic level. Manipulating gene expression proved a powerful method to identify critical 
genes and elucidate pathways that play a role in cancer development and therapy resistance. 
This knowledge may form the base for new drug developing activities. 

RNA interference
Posttranscriptional gene silencing, or RNA interference (RNAi), is based on a biological process 
in which small RNA molecules inhibit gene expression by targeting the mRNA for degradation. 
In fact, during artiϐicial gene silencing, we use the biosynthesis routes of natural regulatory RNA 
molecules, the microRNAs (miRNAs). These are endogenously expressed non-coding RNAs of 
about 22 nucleotides long. The majority of the identiϐied miRNAs are intergenic or oriented 
antisense to neighboring genes and undergo heavy processing before reaching the mature 
miRNA status(132). After transcription, the primary miRNA transcript, pri-miRNA, is cropped by 
the Drosha-complex into a hairpin-shaped pre-miRNA. After transportation to the cytoplasm, 
the Dicer-complex further processes the pre-miRNA by removing the hairpin-loop, resulting 
in a miRNA:miRNA* duplex. Subsequently, the duplex is dissociated and the mature miRNA is 
incorporated in the RNA-induced silencing complex (RISC), where it interacts with its mRNA 
target. miRNAs exert their effect primarily through a 6-8 nucleotide long sequence, the seed 
region, that binds preferably to the 3’ untranslated region (3’UTR) of the mRNA(133,134). This 
results in mRNA degradation or translational repression. Since miRNAs do not need to be fully 
complementary to their target mRNA, they are able to regulate the expression of hundreds of 
genes simultaneously(135). MiRNAs can be overexpressed by transient transfection of a synthetic 
miRNA (miRNA mimic) or by stable transduction of a miRNA encoding gene. This makes them 
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interesting tools to identify combinations of genes that might be lethal to cells. Moreover, the 
miRNAs themselves might be used as drugs although targeting to the cells of interest is still a 
major problem. Typical applications of miRNA (mimic) libraries are investigations of cellular 
processes like proliferation, migration and gene regulation(136-140). More recently, such libraries 
were also employed to identify modulators of drug response(141-146).
Over the past years, the role of miRNAs has been assessed in HNSCC initiation and progression. 
It is now well established that deregulation of miRNA levels might result in enhanced oncogene 
expression. An example is the downregulation of miR-138 in HNSCC and many other tumor 
types(147), although its target mRNA is not yet identiϐied. In contrast, upregulation of certain 
miRNAs might restrain expression of tumor suppressor genes, as was shown for miR-16 which 
silences the antiproliferative effects of BCL2(148) and miR-21 which inhibits apoptosis and was 
associated with poor survival(149).
The biomolecular pathways involved in miRNA-mediated gene regulation, can be exploited for 
interference of gene expression with small interfering RNA (siRNA). SiRNAs are synthetic double-
stranded, 20-25 bp long RNA molecules that, like miRNAs, are processed by Dicer(150), although 
siRNAs are cleaved into single-stranded molecules, whereas miRNAs are dissociated(151). When 
incorporated in the RNA-induced silencing complex (RISC) the single-stranded siRNA binds 
only to fully complementary mRNA molecules(152). For this reason, siRNAs are assumed to 
inϐluence the expression of only one gene. SiRNA:mRNA binding results in the degradation of 
the mRNA and a decrease in protein expression. Synthetic siRNAs can be introduced in a cell by 
transfection and this results in transient, speciϐic knockdown of the desired gene. 
Several other tools are available to downregulate gene expression. Short-hairpin RNAs (shRNAs) 
are produced from synthetic genes and can be inserted in retroviral or lentiviral vectors to 
transduce cells of interest. The shRNA is subsequently randomly integrated in the host cell DNA. 
The product resulting from transcription mimics pri-miRNA and is processed as was described 
for miRNAs. 
Loss-of-function experiments using siRNAs have been increasingly implemented in high-
throughput platforms and proved to be an important genomic research tool(153-157). Function-
speciϐic or complete genome-wide siRNA screens are valuable, unbiased methods to identify 
genes that modulate drug response(158-167) and this may lead to new lead compounds(168-171).

TARGETED TREATMENT: ONCOGENE ADDICTION AND SYNTHETIC LETHALITY

Speciϐic oncogenic pathways might be (over)activated in tumors by mutations in a key player, 
such as mutations in EGFR found in non-small cell lung cancer. The tumor cells may depend on 
these stimulatory signals and become oncogene addicted. This concept has been shown to allow 
targeted treatments. When a small molecule inhibitor restrains the activated oncogene, the 
cells may die. However, head and neck cancer seems more a disease caused by the inactivation 
of suppressing pathways than the activation of oncogenic pathways, hampering the design of 
novel treatment strategies. Though, there might be an alternative approach to target inactivated 
suppressing pathways by exploiting synthetic lethal interactions.
A genetic interaction in which mutations in two or more genes result in cell death, whereas 
alteration of only one of the genes is harmless, is deϐined as synthetic lethality(172). Typically, 
the involved gene products take part in the same cellular process or can function as a bypass 
route for the other. Since tumor cells already harbor many mutations, the concept of synthetic 
lethality can be used to identify new drug targets that are tumor cell speciϐic.
Several studies have reported decreased tumor cell survival by inhibition of individual genes in 
a speciϐic background of mutations(173). An important synthetic lethal interaction was recently 
identiϐied. Breast cancer cells with mutated BRCA1 or BRCA2, which are involved in the repair 
of double-stranded DNA breaks by homologous recombination, showed to be very sensitive to 
inhibition of PARP, an enzyme required for single-stranded DNA repair(174,175). Single stranded 
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DNA breaks that occur by natural causes or that are radiation induced, can be repaired by 
PARP-mediated base excision repair, but, when left unrepaired, develop into double stranded 
DNA breaks during replication. These are preferably repaired by homologous recombination 
during S/G2 phase when the homologous sister chromatid is available. This process requires 
BRCA1 and BRCA2. The impairment of both pathways that are important for maintenance of 
DNA stability, eventually results in cell death. Later it became apparent that also cells with other 
defects in genes involved in homologous recombination die after PARP inhibition(176). Clinical 
trials are now performed to determine the safety and efϐicacy of PARP inhibitors in BRCA1 or 
BRCA2 deϐicient breast cancer(177-179).
Large-scale RNA interference (RNAi) screens are excellently suited to systematically identify 
synthetic lethal interactions in human cells. This approach can also be used to identify genes 
that are synthetic lethal with the oncogenic expression of a gene that is difϐicult to target. For 
example, tumor cells that depend on oncogenic KRAS expression might be eliminated by the 
inhibition of another, synthetic lethal, gene(180-182). This approach might circumvent a long 
complicated road to KRAS drug development. Furthermore, genome-wide RNAi screens can be 
used to identify genes that enhance the effect of a speciϐic anticancer drug(167,183,184). Identiϐication 
of such drug sensitizing genes might be the beginning of tackling cancer therapy resistance. 

OUTLINE OF THIS THESIS

Patients suffering from advanced stage HNSCC have less than 40% chance to survive the ϐirst ϐive 
years after diagnosis. Tumors may not respond well to chemoradiation, may relapse, or distant 
metastases may occur with major impact on outcome. Moreover, there is a lack of biomarkers 
that predict chemoradiation response, which hampers the personalization of therapy. In this 
thesis we used functional genetic screens to identify potential biomarkers for cisplatin response 
as well as novel therapeutic targets. In addition, we describe a novel and more suitable marker 
to isolate the head and neck cancer stem cell population, and studied the relevance of this 
marker for outcome prediction. 
In spite of all the available knowledge on the pharmacodynamics and anti-tumor effect of 
cisplatin, the exact mechanism of platinum-based chemotherapeutic response in HNSCC is 
not clear. In Chapter 2, we aimed to identify cellular characteristics that determine cisplatin 
response in a large panel of HNSCC cell lines. 
In an attempt to further identify genes that confer cisplatin response in HNSCC, we performed a 
genome-wide siRNA screen in the context of cisplatin treatment. In Chapter 3 our ϐindings are 
described on how important the role of the FA/BRCA pathway is in head and neck cancer cells 
in the response to cisplatin. 
Besides the identiϐication of genes that modify the effect of cisplatin, we aimed to ϐind genes that 
are essential for tumor cell maintenance in general, while they are less important for the viability 
of normal cells. To this end we mined the data of the genome-wide siRNA screen. In Chapter 4 
the data on one cherry-picked hit is presented. Furthermore, we screened a microRNA library 
in order to identify microRNAs that might be lethal when overexpressed in tumor cells, while 
immortalized normal keratinocytes remained viable (Chapter 5).
Over the past years the role of cancer stem cells in the resistance to cancer treatment is 
increasingly emphasized (as described above). Therefore, it is important to recognize the 
cancer stem cells (CSCs) within a tumor and subsequently try to ϐind ways to characterize and 
speciϐically eliminate these cells. In Chapter 6 we identiϐied CD98 as a novel HNSCC CSC marker, 
which seems more suitable and speciϐic than CD44. 
The newly identiϐied CSC marker CD98 was used in Chapter 7 to ϐind an explanation for the 
survival beneϐit that patients with HPV-positive HNSCC tumors have over patients with HPV-
negative tumors. HPV-positive tumors have a favorable prognosis and are very sensitive to 
anticancer therapy. We hypothesized that this might be the result of a lack of CSCs in these 
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tumors. We analyzed a large cohort of HNSCC tumors for HPV-presence and CD98 expression 
and correlated these parameters with clinical outcome. The results were compared to those 
obtained with the established HNSCC CSC marker CD44.
A general discussion of the results described in this thesis is provided in Chapter 8.
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