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Introduction 
 

Type 2 diabetes mellitus is a serious chronic disease, with important consequences for 

every- day life. Incidence and prevalence are rapidly increasing in the last decennium, not 

only in the developed countries but even more in the developing countries. At 1 January 

2008, 670.000 inhabitants of the Netherlands had type 2 diabetes (± 4%) and another 

250.000 adults were unaware that they had this disease (1). It is expected that the amount of 

diabetic patients in the Netherlands will increase to 1.3 million in 2025. The WHO has 

estimated that in the year 2000, 171 million adults had type 2 diabetes mellitus and that this 

will increase to 366 million in the year 2030 (2). To prevent this increase, we need more 

knowledge of the pathophysiology of type 2 diabetes mellitus and the phenotypes at high 

risk, in order to develop more effective prevention strategies and to improve treatment 

possibilities. 

Type 2 diabetes mellitus will develop when insulin secretion is not adequate for the 

prevailing insulin sensitivity. As long as the insulin secretion can keep up with the 

decreasing insulin sensitivity, there will be no symptoms of glucose intolerance. There is a 

continuing debate about what comes first; the decreasing insulin sensitivity or the impaired 

insulin secretion. During each stage of the development of type 2 diabetes mellitus, insulin 

resistance and insulin secretory dysfunction are independent predictors of worsening 

glucose tolerance and are, therefore, both targets for the primary prevention of the disease 

(3). Since better tests were developed to assess the insulin secretion and more research was 

performed in persons with different degrees of glucose tolerance, small impairments of �-

cell function can already be detected in persons without any symptom of hyperglycaemia or 

type 2 diabetes mellitus (4). 

 

Insulin secretion 
�-cells in the pancreas islets are responsible for the insulin secretion. Glucose is the most 

potent secretagogue as it produces robust insulin secretion in a few minutes after entering 

the �-cell and the stimulatory effect lasts as long as the plasma glucose is elevated. The �-

cell insulin secretory response to glucose occurs in two phases: an acute first phase, lasting 

a few minutes and then declining followed by a gradually increasing second  phase to a 

peak within 30-40 minutes. Glucose is rapidly transported into the �-cells, largely via the 
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GLUT1 transporter and partly via the GLUT2 transporter (5;6). Next glucose 

phosphorylation takes place by glucokinase, a strict glucose specific enzyme,  that has 

demonstrated to be the key regulator of the glucose sensing in �-cells (7;8). The end 

product of this glucose metabolism, pyruvate, enters the mitochondria, were it follows two 

different routes. The first route is oxidation to acetyl-CoA, which provides a large amount 

of ATP. The increased cellular ATP/ADP ratio closes KATP-sensitive channels, resulting in 

membrane depolarization followed by Ca2+ influx through voltage-gate-dependent Ca2+ 

channels. This causes exocytose of insulin granules. Next to this KATP- dependent route the 

mitochondria provide a KATP- independent way of glucose stimulated insulin secretion by 

carboxylation of pyruvate to oxaloacetate by the enzyme pyruvate carboxylase. Metabolites 

produced by the mitochondria are exported to the cytosol and function as intracellular 

messengers to support insulin secretion. Among these amplifying signals are NADPH, 

GTP, Malonyl-CoA, Long chain acyl-CoA, Glutamate and PEP (9).  

The most important physiologic non-glucose secretagogues that increase the insulin 

secretion are incretins such as glucose-dependent insulin releasing polypeptide (GIP) and 

glucagon-like peptide-1(GLP-1). Immediately after oral ingestion of nutrients GIP is 

mainly secreted by the K cells in the upper small intestine while GLP-1 is predominantly 

secreted by entero-endocrine L cells located in the distal intestine (10-12). This prompt 

release is probably more indirect controlled by neural and endocrine factors in the proximal 

gastrointestinal tract, while later incretin secretion is maintained by arrival of nutrients 

lower in the intestine. Binding of GIP and GLP-1 to their specific receptor at the �-cell 

membrane causes the activation of adenyl cyclase via the G protein and leads to an increase 

of intracellular cyclic adenosine monophosphate (cAMP). This evokes a cascade of 

intracellular events resulting in increased concentration of cytosolic Ca2+ which drives the 

exocytose of insulin granules. Incretin receptors are expressed in many other tissues 

including several brain areas and the heart. Besides the enhancement of insulin secretion, 

both incretins promote �-cells proliferation while GLP-1 also stimulates insulin 

biosynthesis, reduces food intake, inhibits glucagon secretion and decreases gastrointestinal 

secretion and motility.  

Amino acids and fatty acids stimulate insulin secretion not only by enhancing the 

incretin production in the intestinal cells (10;13), they have also a specific effect on �-cells. 

Charged amino-acids like lysine and arginine cross the �-cell membrane via a transport 

system specific for cationic amino acids. The accumulation of the positive charged 
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molecules directly depolarizes the �-cell membrane leading to calcium influx and 

consequently increased insulin secretion (14;15). On the other hand, fatty acids play a role 

in the intracellular amplification pathway of insulin secretion (15) and may remodel the 

plasma membrane to facilitate insulin secretion (9). 

Age appears to be negatively correlated with �-cell function in glucose tolerant 

Caucasians, even after correction for insulin sensitivity and this might be due to an 

impairment in proinsulin conversion to insulin (16;17). 

The autonomic regulation of the �-cell function is influenced by the splanchnic 

nerve of the sympathetic nervous system (SNS) and the vagus nerve of the parasympathetic 

nervous system (PNS) (18). The splanchnic nerve releases norepinephrine from nerve 

terminals and epinephrine from the adrenal medulla, initiating catabolic metabolic 

processes including inhibition of insulin secretion. In contrast the vagus nerve mediates 

anabolic responses to internal stimuli from the viscera and external stimuli from the sensory 

components of food. Activation of the vagal efferent activity occurs at the onset of and 

during meal ingestion and plays an important role in the acute and further postprandial 

insulin responses. The well-known neurotransmitter of the vagus nerve, acetylcholine, acts 

on the �-cells by muscarine receptors. Consequently, a combination of reactions follows, 

including increment of cytosolic concentration of Ca2+, independently of extracellular Ca2+ 

uptake, stimulation of the formation of arachidonic acid and activation of protein kinase C, 

resulting in a rapid stimulation of exocytosis and insulin secretion (19). There are three 

more neurotransmitters localized to islet parasympathetic nerves: vasoactive intestinal 

polypeptide, gastrin releasing peptide and pituitary adenylate cyclase activating 

polypeptide. They all stimulate insulin secretion by activating intracellular signalling 

mechanisms, which are partially different. Prolonged mild hyperglycaemia results in a 

compensatory increase in insulin secretion, which is partially mediated by an induction in 

vagal efferent activity (20). 

Autonomic and endocrine responses to food consumption, which are evoked by 

sensory mechanisms before nutrients have been absorbed, are called ‘cephalic phase 

responses’ (19). The insulin secretion in the first 3-4 minutes of a meal intake is the result 

of three successive pathways: first, the afferent pathway activated by olfactory, visual, 

gustatory and oropharyngeal mechanical receptors, secondly the integration of these stimuli 

in the brain and finally the efferent pathway, mediated by the cholinergic neurons. 

Although the contribution of the cephalic phase to the entire postprandial insulin secretion 
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is only 1-3%, the cephalic phase is probably of considerable functional importance for 

glucose tolerance after meal intake. Inhibition of the early (15 min) response to a meal by 

the ganglionic antagonist , trimetophane, is accompanied by increased post prandial glucose 

concentrations at min 45 and 60 (19). 

Increased sympathetic activity results in inhibition of glucose stimulated insulin 

secretion in situations of stress, including exercise and trauma (21). The neurotransmitter 

norepinephrine activates the �2- adrenergic receptors in the �-cell membrane. The 

inhibition of insulin secretion is mediated by hyperpolarisation of the �-cells through 

opening of the ATP- regulated K+ channels. This inhibits the Ca2+ uptake and reduces the 

cytosolic concentration of Ca2+. Reduced formation of cyclic AMP and inhibition of the 

metabolic processes leading to exocytosis have also been shown as cause of reduced insulin 

secretion after activation of �2- adrenergic receptors in the �-cell membrane. Although 

norepinephrine can also stimulate insulin secretion by activation of the �2-adrenergic 

receptors on the �-cell membrane, resulting in increased formation of cAMP in the �-cells 

(19), increased sympathetic activity results predominantly in decreased insulin secretion 

(21). 

Besides the parasympathetic and sympathetic nervous systems, each individual islet 

is also extensively innervated by a network of sensory nerves and by nerve fibres, stained 

for a marker of nitric oxide synthethase. However the role of these two types of nerve fibres 

is far from understood (19). 

Insulin secretion in adult life may also be related to pre-natal circumstances. The 

consequences of the famine during the Dutch Hunger Winter of 1944-1945 have been 

extensively investigated. It appeared that foetal malnutrition especially during the first 6 

months gives rise to impaired glucose tolerance in adult life based on an insulin secretion 

defect (22). 

 

Insulin signalling and insulin action  
The insulin molecule consists of two polypeptide chains, the A chain (21 amino acids) and 

the B chain (30 amino acids), linked by two disulphide bridges. The insulin cell-surface 

receptor is a heterotetrameric receptor, composed of two extracellular � subunits and two � 

subunits that contain an extracellular portion, a transmembrane domain and an intracellular 

part. Insulin binding to the � subunit results in phosphorylation and activation of the 
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tyrosine kinase in the intracellular part of the � subunits (23). This activates the insulin 

receptor substrate (IRS) proteins 1-4, which are the main mediators of the intracellular 

insulin receptor signalling events (24). The four IRS proteins are tissue specific; IRS-1 

protein mediates the insulin action specifically in the skeletal muscle, while IRS-2 protein 

acts in the liver. The tyrosine phosphorylation of IRS-1 leads to two major signalling 

pathways e.g. the phosphatidylinositol-3’-kinase (P13K) pathway and the mitogen-

activated protein kinase (MAPK) pathway. The P13K pathway plays a crucial role in the 

metabolic actions of insulin, by stimulating glycogen, lipid and protein synthesis. It also 

stimulates nitric oxide production a potent vasodilator and anti-atherogenic agent. In 

muscle and fat cells this pathway also affects the insulin regulated glucose transport 

(GLUT4) system, which facilitates the rapid uptake of glucose through the cell membrane 

(23). The activation of MAPK pathway leads to intra-nuclear processes, which influence 

transcription factors and DNA synthesis. This results not only in cell growth, cell 

proliferation and cell differentiation, but also in activation of  multiple inflammation 

pathways (25). In short, the core business of insulin in the body is energy storage. 

Insulin sensitivity is at the physiological level associated with obesity, physical 

inactivity and aging. Decreased insulin sensitivity is characterized by an impaired ability of 

insulin to inhibit hepatic glucose production and to stimulate glucose uptake by skeletal 

muscle. Insulin also fails to suppress lipolysis in adipose tissue. The molecular mechanisms 

underlying a decrease in insulin sensitivity are not all precisely known, but may be mainly 

based on a deregulation of one of the many steps of the insulin signalling pathway. Protein 

tyrosine phosphatises (PTPs), which dephosphorylate the insulin receptor or downstream 

substrates may be key regulators of the insulin receptor signal transduction pathway and for 

the most part attenuate insulin action (26). Recent studies in human skeletal muscle of 

insulin resistant type 2 diabetic and obese non diabetic individuals showed profound insulin 

resistance in the P13K pathway with normal stimulatory effect of insulin on the MAPK 

pathway (25). This defect in insulin signalling impairs not only glucose uptake, glucose 

metabolism in the muscle cells and NOS synthesis but, because of the persistent 

hyperinsulinaemia, at the same time activates via the MAPK pathway multiple genes 

coding for pro–inflammatory .mediators (TNF�, IL-1B, PKC). These pro-inflammatory 

mediators inhibit the intracellular insulin signalling and induce the degradation of IRS-1 by 

phosphorylation of the Serine residues on the IRS proteins (27).  
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Insulin signalling can also be inhibited by signals from other pathways, like that in 

lipotoxicity. Obesity is often characterised by a state of low grade chronic inflammation 

with increased levels of pro-inflammatory cytokines and their effects on insulin resistance 

by serine phosphorylation of IRS-1(25). Studies have shown that fat accumulation in 

muscle and hepatic cells are correlated with organ-specific insulin resistance. Increased 

release of free fatty acids from the adipose tissue decreases insulin mediated glucose 

transport in skeletal muscle and impairs suppression of glucose production by the liver(27). 

Adipocytes and infiltrated macrophages of visceral fat of obese and type 2 diabetic 

individuals secrete pro-inflammatory cytokines (TNF�, Interleukin-6), acute phase 

reactants (C-reactive protein) and hormones (leptin and resistin) which also induce insulin 

resistance. Moreover, visceral adiposity is a state with a relative deficiency of adiponectin, 

a potent insulin-sensitizing hormone (24). 

The importance of insulin sensitivity and specially the role of the adipose tissue in 

the development of diabetes mellitus has recently been shown by the results of the CANOE 

(Canadian Normoglycemia Outcomes Evaluation) trial (28). A low dose combination 

therapy of rosiglitazone (a PPAR� agonist that increases insulin sensitivity among others by 

its action on adipose tissue and fatty acids in the muscle) with metformin (a biguanide that 

reduces hepatic glucose production and increases the peripheral insulin sensitivity) 

appeared to be highly effective in the prevention of type 2 diabetes in patients with 

impaired glucose tolerance. The low dose combination therapy did not only results in a 

smaller decline of insulin sensitivity but also in a reduction in inflammation and 

improvement in hepatic function. 

Insulin sensitivity declines slowly during aging, but this may be due to age–related 

changes in body composition, rather than a consequence of aging itself (29). Increased 

insulin resistance in elderly was found to be associated with fat accumulation in muscle and 

liver cells that may be a result of age-associated decrease in ATP production by the 

mitochondria (30). However, a recent study of Karakelides (31) showed that an age related 

decrease in muscle mitochondrial function was neither related to adiposity nor insulin 

sensitivity. 
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Genetic and environmental factors  

The importance of genetic influences is sustained by twin studies, and a strong familial 

aggregation. In 1981 Barnett (32) showed a nearly complete concordance rate for type 2 

diabetes mellitus in identical twins while in the few discordant pairs the unaffected twin 

already showed metabolic abnormalities. His conclusion that genetic factors are 

predominant in the aetiology of type 2 diabetes mellitus has been confirmed by many twin 

(33-52) and family (53-63) studies in the following decades. A positive family history 

immediately increases the chance to get the disease. The risk is six times higher when two 

first degree relatives have type 2 diabetes mellitus and at least two times when one first 

degree relative is affected (64;65). Further evidence for a genetic role is the wide variation 

in prevalence among different ethnic groups (66;67). 

At the end of the 20th century twin and family studies also started to estimate the 

heritability of individual differences in glucose and insulin levels. Most of these studies 

were performed with only fasting glucose and insulin levels, but a few studies have also 

addressed heritability of the responses to glucose challenge tests like the Oral Glucose 

Tolerance tests, the intravenous glucose tolerance test (mainly for assessment of �-cell 

function) and the euglycaemic-hyperinsulinaemic clamp test (for insulin sensitivity only). 

Table 1.1 and 1.2 give an overview of twin and family studies, performed from 1996 till 

2010, that assessed the heritability of insulin sensitivity and insulin response in many 

different ways. Table 1.3 summarizes the results from studies, performed in the same 

period, that estimated heritability for clinical indicators of (pre)diabetic state. 

A further step towards a better understanding of the genetic variation involved in 

type 2 diabetes mellitus was the identification of the actual genetic variants. In the last 

decade studies came out that tested the association of variants in candidate genes with 

measures of glucose metabolism and/or the risk of type 2 diabetes mellitus. But 

increasingly the candidate gene approach has given way to the genome wide association 

(GWAS) approach. Large collaborative consortia across many different research groups 

like MAGIC (the Meta-Analyses of Glucose an Insulin related Traits Consortium) made it 

possible to combine the data of tens of thousands of subjects to identify new genetic 

variants that affect glucose metabolism and/or the risk of type 2 diabetes mellitus. So far, 

GWA studies have uncovered 26 confirmed gene variants that are associated with a higher 

risk for the development of type 2 diabetes mellitus (68;69) and at least fifteen of these  
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Chapter 1 

 

 

genes affect �-cell function. A number of genetic loci have also been revealed for glucose 

and insulin metabolism as reviewed by Ingelsson (70). Nearly all these loci derive from 

studies that performed glucose and insulin measurements in the fasting state or during an 

OGTT. 

 

Outline of the thesis 
Despite impressive progress still much of the pathophysiology of type 2 diabetes mellitus is 

unknown. In part this reflects a poor understanding of the causes of interindividual 

differences in insulin production, even in healthy individuals. The twin-family study 

presented in this thesis focuses on the function of the healthy �-cell. Its aim is to reveal the 

genetic and environmental contribution to individual variation in different aspects of �-cell 

function and to associate the heritable aspects of �-cell function with candidate genotypes 

arising from ongoing GWA studies. 

Chapter 2 details the design of the study, including the recruitment of the 

participants and a description of the tests of the �-cell function performed. In Chapter 3 we 

estimate the heritability of the main diagnostic parameters used in type 2 diabetes mellitus, 

fasting glucose and HbA1c, with special attention to a possible overlap in the genetic 

influences on these parameters. In chapter 4 the heritability of classical and mathematical 

model derived �-cell function parameters is estimated during a highly naturalistic 

challenge, the mixed meal test. This test includes the influence of incretins on the insulin 

secretion. In chapter 5 we present the use of the extended hyperglycaemic clamp to assess 

the heritability of insulin secretion after different intravenous secretagogues. A 

euglycaemic-hyperinsulinaemic clamp was performed in the same subjects to estimate the 

heritability of insulin sensitivity. Associations between selected genotypic variants from 

recent GWA studies and �-cell function are described in the last two chapters. Chapter 6 

shows the association between eight type 2 diabetes mellitus related gene variants and the 

insulin response, stimulated by the three different secretagogues during hyperglycaemic 

clamps. To increase the power of this investigation, four different clamp studies were 

combined. In Chapter 7 we show that variation in several type 2 diabetes mellitus risk 

genes is associated with different aspects of �-cell function, assessed with the extended 

hyperglycaemic clamp tests. 
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