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Abstract

Current epidemic obesity levels apply great medical and financial pressure to the strenuous economy of obesity-prone
cultures, and neuropeptides involved in body weight regulation are regarded as attractive targets for a possible treatment
of obesity in humans. The lateral hypothalamus and the nucleus accumbens shell (AcbSh) form a hypothalamic-limbic
neuropeptide feeding circuit mediated by Melanin-Concentrating Hormone (MCH). MCH promotes feeding behavior via
MCH receptor-1 (MCH1R) in the AcbSh, although this relationship has not been fully characterized. Given the AcbSh
mediates reinforcing properties of food, we hypothesized that MCH modulates motivational aspects of feeding. Here we
show that chronic loss of the rat MCH-precursor Pmch decreased food intake predominantly via a reduction in meal size
during rat development and reduced high-fat food-reinforced operant responding in adult rats. Moreover, acute AcbSh
administration of Neuropeptide-GE and Neuropeptide-EI (NEI), both additional neuropeptides derived from Pmch, or
chronic intracerebroventricular infusion of NEI, did not affect feeding behavior in adult pmch+/+ or pmch2/2 rats. However,
acute administration of MCH to the AcbSh of adult pmch2/2 rats elevated feeding behavior towards wild type levels. Finally,
adult pmch2/2 rats showed increased ex vivo electrically evoked dopamine release and increased limbic dopamine
transporter levels, indicating that chronic loss of Pmch in the rat affects the limbic dopamine system. Our findings support
the MCH-MCH1R system as an amplifier of consummatory behavior, confirming this system as a possible target for the
treatment of obesity. We propose that MCH-mediated signaling in the AcbSh positively mediates motivational aspects of
feeding behavior. Thereby it provides a crucial signal by which hypothalamic neural circuits control energy balance and
guide limbic brain areas to enhance motivational or incentive-related aspects of food consumption.
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Introduction

The Melanin-Concentrating Hormone (MCH) precursor (Pmch)

is predominantly expressed in neurons of the lateral hypothalamus

(LHA) and the incerto hypothalamic area (sometimes referred to

as zona incerta), which project throughout the brain [1,2,3]. Pmch

processing generates glycine-glutamic acid (NGE), glutamic acid-

isoleucine (NEI), and MCH [4]. MCH, a 19-amino acid cyclic

peptide, is a key regulator of food intake and metabolism; Pmch

mRNA is upregulated after fasting [5,6], Pmch-deficient (pmch2/2)

rodents are hypophagic, lean, and have a decreased body weight

as compared to wild type siblings [7,8,9], whereas Pmch

overexpression results in hyperphagia and obesity [10]. Finally,

intracerebroventricular (ICV) administration of MCH increases

feeding [6,11,12,13,14,15,16].

In rodents MCH binds to MCH receptor-1 (MCH1R),

which is present at high levels in limbic regions

[17,18,19,20,21]. For example, the nucleus accumbens shell

(AcbSh) modulates orexigenic activity of MCH [15,21]. Mch1r-

deficient mice are lean, hyperphagic, and hyperactive [22,23],

central blockade of MCH1R lowers body weight and food

intake through several mechanisms [24,25,26], and acute

central MCH1R-blockade decreases high-fat food-reinforced

operant responding [27].
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Dopamine is an important neurotransmitter in the nucleus

accumbens (NAc), and absence of MCH-mediated signaling in

mice increased NAc dopamine release and NAc dopamine

receptor levels [28,29,30,31]. MCH1R is expressed in AcbSh

medium spiny neurons (MSNs) [21] and coexpressed with

dopamine D1 and D2 receptors (D1R and D2R, respectively)

[32]. Finally, reductions of AcbSh neuronal excitability, either by

administration of MCH, an AMPA receptor antagonist, or a

GABA receptor agonist all stimulate baseline-feeding behavior

[33,34,35,36,37,38], supporting a cellular excitability hypothesis of

AcbSh-mediated feeding behavior [39].

The above findings link the hypothalamic orexigenic MCH

circuit with neuronal AcbSh signaling activity that influences

behavioral responses to rewarding stimuli including food and

drugs of abuse. Furthermore, these findings have also generated

interest from the pharmaceutical industry, as functional blockade

of MCH1R in humans could be a potential target for the

treatment of obesity.

In this study we use a recently generated rat knockout model [8]

to investigate how chronic loss of Pmch in the rat affects

motivational or incentive-related aspects of feeding behavior.

Results

Meal structure analysis in pmch2/2 rats during rat
development

A previous study showed that chronic loss of Pmch in the rat

resulted in hypophagia as compared to wild-type rats [8]. To

investigate in more detail which elements of feeding behavior are

changed during the observed hypophagia, we performed a meal

structure analysis (parameters: body weight, food intake, total meal

duration, average meal duration, meal frequency, average intermeal

interval, average meal size, rate of eating, and satiety ratio) in pmch+/+

and pmch2/2 rats at PNDs 40, 58, 70, 84, and 98 (Figs. 1A – I).

The statistical analyses revealed a genotype effect for body weight,

food intake, average meal size, rate of eating, and satiety ratio

Figure 1. Meal structure analysis in pmch+/+ and pmch2/2 rats. (A) Body weight, (B) food intake, (C) total meal duration, (D) average meal
duration, (E) meal frequency, (F) average intermeal interval, (G) average meal size, (H) rate of eating, and (I) satiety ratio in pmch+/+ and pmch2/2 rats at
postnatal days [PND] 40, 58, 70, 84, and 98. Body weight, food intake, average meal size, and rate of eating are predominantly decreased in pmch2/2

rats, while satiety ratios are predominantly increased in pmch2/2 rats (1, P,0.05, WT vs. HOM; *P,0.05, **P,0.005, ***P,0.001, Students’ t-test; n = 8 per
group). Data are shown as mean 6 S.E.M.
doi:10.1371/journal.pone.0019600.g001
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(Table S1). In addition, a time x genotype interaction was observed

for body weight and average meal size (Table S1).

Although some parameters were affected at individual time

points, robust effects after chronic loss of Pmch in the rat were only

observed for body weight, food intake, and average meal size.

Because average meal size is markedly affected, but meal duration

is not, this translates to changes in rate of eating and satiety ratio.

Decreased acute hyperphagia in pmch2/2 rats when
newly presented with high fat diet

To investigate whether the hypophagia in pmch2/2 rats (this

study and [8]) results from perturbed food-induced reward

signaling, we measured acute hyperphagia of adult pmch+/+ and

pmch2/2 rats, grown on a standard semi-high protein (SHP) diet,

when newly offered a palatable high-fat (HF) diet. In addition,

acute hypophagia in response to newly offered SHP diet to adult

rats grown on an HF diet was also investigated.

Home-cage food intake during basal days (days 1–5) was

decreased in pmch2/2 rats as compared to pmch+/+ rats on both

SHP and HF diet (P,0.01, by Student’s t-test; Figs. 2A and B).

Statistical comparison of baseline levels revealed a significant effect

of diet (F(1,25) = 12; P,0.005) and of genotype (F(1,25) = 29; P,0.001),

but no diet x genotype interaction (F(1,25) = 0.07; P = 0.79). This

suggests that pmch2/2 rats respond equally to the intrinsic

rewarding properties of the HF diet as compared to pmch+/+ rats.

However, statistical analysis for acute hyperphagia, when offered a

HF diet for the first time, revealed a significant effect of time

(F(6,77) = 41; P,0.001), of genotype (F(1,13) = 16; P,0.005), and a time

x genotype interaction (F(6,77) = 41; P,0.005; Fig. 2A). Although

both pmch+/+ and pmch2/2 rats increased their caloric intake

significantly during the first day on HF diet (F(1,13) = 191.9;

P,0.001), the increase in caloric intake showed an increased trend

in pmch+/+ rats as compared to pmch2/2 rats (17266% versus

15266%, respectively; P = 0.060, Student’s t-test).

When adult pmch+/+ and pmch2/2 rats, raised on an HF diet, were

switched to SHP diet, the statistical analysis for acute hypophagia

revealed significant effects of time (F(4,46) = 5; P,0.005) and genotype

(F(1,12) = 14; P,0.005), but no time x genotype interaction (F(4,77) = 0.5;

P = 0.73; Fig. 2B). Both pmch+/+ and pmch2/2 rats reduced their

caloric intake during the first day on SHP diet (F(1,12) = 8; P,0.05).

However, during acute hypophagia the decrease was equal between

pmch+/+ and pmch2/2 rats (1468% decrease versus 1767%

decrease, respectively; P = 0.74, Student’s t-test).

Loss of Pmch in the rat reduces high-fat food-reinforced
operant responding

As pmch2/2 rats demonstrated hypophagia, we set out to

investigate if pmch2/2 rats have a decreased incentive, or

motivation, for HF food-reinforced operant responding. Adult

food-limited male pmch+/+ and pmch2/2 rats were tested in a self-

administration paradigm where rats could lever press for 45% HF

pellets (Fig. 3A).

During the training phase (FR1 schedule) rats were given 3 hr

access to the pellets every other day. Statistical analysis for total

active-lever presses during training revealed a significant effect of

time (F(4,71) = 4; P,0.05), but not of genotype (F(1,18) = 1; P = 0.25) and

a trend for the time x genotype interaction (F(4,71) = 2; P = 0.08; Fig. 3B).

The average number of pellets earned per training sessions was

stable over time and statistical analysis revealed no significant effect

of time (F(7,128) = 1; P = 0.70) or of genotype (F(1,18) = 1; P = 0.40), and

also no time x genotype interaction (F(7,128) = 1; P = 0.43; Fig. 3B).

Statistical analysis for total inactive-lever presses revealed a

significant effect of time (F(5,84) = 11; P,0.001), but not of genotype

(F(1,18) = 0.2; P = 0.66) and no time x genotype interaction (F(5,84) = 0.7;

P = 0.61; Fig. 3B). Time-course analysis of the mean pellets earned

within the training sessions revealed a significant effect of time

(F(2,37) = 93; P,0.001) and of genotype (F(1,22) = 12; P,0.005), but no

time x genotype interaction (F(2,37) = 0.1; P = 0.84; Fig. 3C). Mean

cumulative pellet intake per training session was decreased in

pmch2/2 rats as compared to pmch+/+ rats (P,0.005, Student’s t-test;

Fig. 3C, inset). Timeout active-lever presses per pellet earned during

training revealed a significant effect of time (F(3,47) = 14; P,0.001),

but not of genotype (F(1,14) = 2; P = 0.24) and no time x genotype

interaction (F(3,47) = 3; P = 0.07; Fig. 3D). This observation mirrors

the progressive escalation of timeout active lever presses across

sessions (data not shown), which has been previously reported

[27,40,41,42,43].

During the progressive ratio (PR) phase [44] rats were given 3

hr access to the pellets every other day. Statistical analysis for

breakpoint values during PR revealed a significant effect of time

(F(3,54) = 8; P,0.001), a trend effect of genotype (F(1,18) = 4;

P = 0.052), but no time x genotype interaction (F(3,54) = 0.5;

Figure 2. Acute hyperphagia in pmch2/2 rats when newly presented with HF diet. (A) Adult pmch+/+ and pmch2/2 rats grown on standard
SHP diet showed acute hyperphagia when newly presented with HF diet. However, acute hyperphagia was attenuated in pmch2/2 rats (17266%
increase in pmch+/+ rats compared to 15266% increase in pmch2/2 rats; ***P,0.001 versus SHP days1–5, repeated-measures ANOVA with special
contrast analysis; n = 7–8 per group). (B) Adult pmch+/+ and pmch2/2 rats grown on HF diet showed acute hypophagia when newly presented with
SHP diet. Acute hypophagia was equal between genotypes (1468% decrease in pmch+/+ rats as compared to 1767% decrease in pmch2/2 rats;
*P,0.05 versus HF days1–5, repeated-measures ANOVA with special contrast analysis; n = 6–8 per group). Data are shown as mean 6 S.E.M.
doi:10.1371/journal.pone.0019600.g002
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Figure 3. Pmch2/2 rats show decreased HF food-reinforced operant responding for 45% fat pellets. (A) Experimental timeline for HF
food-reinforced operant responding paradigm. (B) Number of total active-lever presses (squares), total inactive-lever presses (circles), and total
number of pellets (triangles) during training sessions over 12 alternating days (one 3 hr session per day, every other day). (C) Mean pellets earned
during 12 training sessions (total per 15-min bin time course) or per 3 hr (inset). (D) Total number of time-out (TO) presses per pellet during training
sessions. (E) Breakpoint values of progressive ratio (PR) sessions over 4 alternating days (one 3 hr session per day, every other day), and mean
breakpoint value of the last 3 PR sessions. Number of total active-lever presses (squares) and total inactive-lever presses (circles) during extinction
sessions before (F) cue-induced (22 extinction sessions), (G) pellet-induced (9 extinction sessions), or (H) yohimbine-induced (14 extinction sessions)
reinstatement (R, reinstatement session) of food seeking. Inset shows R session enlarged (n = 10 per group). 1, P,0.05, 11, P,0.005, WT vs. HOM,
repeated-measures ANOVA; *P,0.05, **P,0.005, Students’ t-test. Data are shown as mean 6 S.E.M.
doi:10.1371/journal.pone.0019600.g003
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P = 0.72; Fig. 3E). Mean cumulative breakpoint value of the last

three sessions was decreased in pmch2/2 rats as compared to

pmch+/+ rats (P,0.05, Student’s t-test; Fig. 3E).

After PR, rats were tested on a FR1 schedule for 4 additional 3-

hr sessions (data not shown) followed by 22 3-hr extinction

sessions. Statistical analysis for total active-lever presses during

these 22 extinction sessions revealed a significant effect of time

(F(21,378) = 46; P,0.001) and of genotype (F(1,18) = 7; P,0.05), and a

time x genotype interaction (F(21,378) = 4; P,0.001; Fig. 3F). Cue-

induced reinstatement did not differ between genotypes (P = 0.12;

Student’s t-test; Fig. 3F, inset). Nine additional extinction sessions

preceded pellet-induced reinstatement. Statistical analysis for total

active-lever presses during these 9 extinction sessions revealed a

significant effect of time (F(5,90) = 8; P,0.001) and of genotype

(F(1,18) = 14; P,0.005), but no time x genotype interaction (F(5,90) = 1;

P = 0.43; Fig. 3G). Pellet-induced reinstatement did not differ

between genotypes (P = 0.12; Student’s t-test; Fig. 3G, inset).

Fourteen additional extinction sessions preceded yohimbine (an

a2-adrenergic receptor antagonist and pharmacological stressor)-

induced reinstatement. Statistical analysis for total active-lever

presses during these 14 extinction sessions revealed no significant

effect of time (F(6,112) = 2; P = 0.16) or of genotype (F(1,18) = 1;

P = 0.38), and no time x genotype interaction (F(6,112) = 1; P = 0.21;

Fig. 3H). Yohimbine-induced reinstatement did not differ between

genotypes (P = 0.99; Student’s t-test; Fig. 3H, inset). Total inactive-

lever presses during extinction and reinstatement were very low,

did not differ between genotypes, and did not change over time

(P.0.1; Figs. 3F, G, and H).

Chronic ICV administration of NEI does not affect body
weight or food intake

Pmch2/2 rats lack the three neuropeptides derived from the

Pmch precursor, NGE, NEI and MCH [4,8]. To date, NGE does

not appear to have a biological function, whereas NEI has been

implicated in dopamine system modulation in several brain

regions [45]. Therefore, we administered NEI or aCSF ICV in

pmch+/+ and pmch2/2 rats for 26 days using osmotic minipumps

and measured body weight and food intake.

Administration of NEI did not affect body weight growth in

either pmch+/+ or pmch2/2 rats as compared to pmch+/+ or pmch2/2

rats with aCSF administration, as statistical analysis for body

weight growth revealed a significant effect of time (F(4,81) = 113;

P,0.001; Fig. 4A). However, neither the effect of genotype or

treatment, nor the interaction between time and genotype, or treatment,

nor the triple interaction between genotype, time, and treatment was

significant (P.0.1). Average home-cage food intake, as measured

during 7 days before osmotic pump implantation (basal week) or

during days 7–13 (week 2) or days 20–26 (week 4) after osmotic

pump implantation, was also not affected by NEI administration

in either pmch+/+ or pmch2/2 rats, as statistical analysis for food

intake revealed a significant effect of time (F(2,38) = 21; P,0.001)

and of genotype (F(3,19) = 17; P,0.001; Fig. 4B). However, neither

the effect of treatment, nor the interaction between time and genotype,

or treatment, nor the triple interaction between genotype, time, and

treatment was significant (P .0.1; Fig. 4B). Average water intake, as

measured during the basal week, week 2, or week 4, was not

affected by NEI administration in either pmch+/+ or pmch2/2 rats

(data not shown).

MCH administration to the AcbSh of pmch2/2 rats
rescues feeding behavior to wild-type levels

Acute administration of MCH (1 mg/side) or a MCH1R-agonist

(5 mg/rat) to the AcbSh of wild-type rats increases food intake

[15,21]. Therefore we investigated whether bilateral administra-

tion of MCH (1 mg [419pmol] per side) to the AcbSh of pmch2/2

rats would elevate home-cage feeding behavior to wild-type levels

during the first 4 hr of the dark phase. We also tested if bilateral

co-administration of NEI and NGE (1 mg each [691 and 509pmol,

respectively] per side) to the AcbSh of nondeprived pmch2/2 rats

would affect home-cage feeding behavior.

Statistical analyses revealed a significant effect of time

(F(2,72) = 174; P,0.001), of treatment (F(2,36) = 5; P,0.05) and a time

x genotype interaction (F(2,72) = 6; P,0.01; Figs. 5A and B). In

addition, both the effect of genotype and the interaction between time

and treatment showed a trend (P = 0.09 and P = 0.08, respectively),

while no significant effect was observed for the interaction between

Figure 4. Chronic ICV administration of NEI in pmch2/2 rats does not affect body weight or food intake. (A) Changes in body weight
growth during 26-day ICV aCSF infusion in pmch+/+ (n = 10) and pmch2/2 (n = 6) rats or 26-day ICV NEI infusion in pmch+/+ (n = 3) and pmch2/2 (n = 4)
rats (A). Rat body weight during operation (day 0) was set at 100%. (B) Average food intake (expressed as kcal/day) during aCSF or NEI infusion in
pmch+/+ and pmch2/2 rats before minipump implantation (basal week), or during administration (week 2 or 4 as indicated in A); 1, P,0.005, WT aCSF
vs. HOM aCSF; {, P,0.05, WT NEI vs. HOM aCSF; #, P,0.001, WT aCSF vs. HOM NEI; ,̂ P,0.005, WT NEI vs. HOM NEI, repeated-measures ANOVA). Data
are shown as mean 6 S.E.M.
doi:10.1371/journal.pone.0019600.g004
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genotype and treatment (P .0.1) or the triple interaction between

genotype, time, and treatment (P .0.1). Post hoc analysis revealed

significant effects of MCH-treatment as compared to aCSF-

treatment (P,0.05), but no significant effect for NEI/NGE-

treatment (P.0.1). Within time-point analysis revealed increased

food intake in MCH-treated pmch+/+ rats as compared to aCSF-

treated pmch+/+ rats after 1 hr and 4 hr (P,0.05, Student’s t-test;

Fig. 5A), decreased food intake in aCSF-treated pmch2/2 rats as

compared to aCSF-treated pmch+/+ rats after 4 hr (P,0.05,

Student’s t-test; Figs. 5A and B), decreased food intake in aCSF-

treated pmch2/2 rats as compared to MCH-treated pmch+/+ rats

after 2.5 hr and 4 h (P,0.05 and P,0.005, respectively, Student’s

t-test; Fig. 5A), and decreased food intake in NEI/NGE-treated

pmch2/2 rats as compared to aCSF-treated pmch+/+ rats after 4 hr

(P,0.05, Student’s t-test; Fig. 5B). However, food intake in MCH-

treated pmch2/2 rats did not differ significantly from aCSF-treated

pmch+/+ rats after 4 hr (106612% in pmch2/2 rats; P = 0.68,

Student’s t-test; Fig. 5A). After 22 hr, food intake in aCSF-treated

pmch2/2 rats was decreased as compared to aCSF-treated pmch+/+

rats (8961% in pmch2/2 rats; P,0.05, Student’s t-test; data not

shown).

Finally, after 22 hr food intake of MCH-treated rats did not

differ significantly from food intake of aCSF-treated rats with the

same genotype (data not shown).

Chronic loss of Pmch in the rat affects the dopamine
system

Several studies in Pmch- or Mch1r-deficient mice have shown

increased dopamine release and increased dopamine receptor

levels [28,29,30,31], suggesting that the dopamine system in the

NAc of pmch2/2 rats might also be affected.

First we investigated if NAc dopamine release differs between

genotypes using challenged conditions in neurochemical experi-

ments (i.e. using electric stimulation), revealing that electrically

evoked dopamine release ex vivo was elevated in acute coronal NAc

brain slice preparations from untreated ad libitum-fed pmch2/2 rats

compared to untreated ad libitum-fed pmch+/+ rats (Fig. 6A).

Moreover, sample treatment with GBR12909, a highly specific

dopamine transporter (DAT) inhibitor, increased the difference in

evoked NAc dopamine release even further (12967% at basal

levels vs. 14468% with GBR12909 treatment as compared to

pmch+/+ rats; Fig. 6A). Statistical analysis revealed an effect of

genotype (F(1,44) = 52; P,0.001), treatment (F(1,44) = 112; P,0.001),

and a genotype x treatment interaction (F(1,44) = 7; P,0.05; Fig. 6A).

This suggested that NAc DAT protein levels were increased in

pmch2/2 rats, as was recently shown for pmch2/2 mice [29].

Radioactive ligand-binding analysis revealed that NAc DAT

protein expression was indeed increased in pmch2/2 rats, both in

the nucleus accumbens core (AcbCo; 11866%) and in the AcbSh

(12365%; Fig. 6B). Similar results were observed for the caudate

putamen (CPu) in pmch2/2 rats (Figs. 6A and B), whereas pmch 2/2

mice did not show a difference in CPu DAT levels [29].

As ex vivo electrically evoked dopamine release was increased in

the NAc of pmch2/2 rats, we studied relative gene expression of a

subset of genes, involved in dopaminergic storage capacity or

signaling, in the NAc of adult pmch+/+ and pmch2/2 rats. Relative

expression of D1R (Drd1a), D2R (Drd2), GluR1 (Gria1), DARPP32

(Darpp32), tyrosine hydroxylase (Th), and 5-hydroxytryptamine

(serotonin) receptor 2c (Htr2c) was unchanged between genotypes

(Fig. 6C). However, both relative expression of VMAT2 (Vmat2)

and Synapsin1 (Syn1) showed an increased trend in pmch2/2 rats

compared to pmch+/+ rats (P = 0.067 and P = 0.069 by Students’

t-test, respectively; Fig. 6C).

Vmat2 is responsible for transmitter loading of synaptic vesicles

[46], is preferentially expressed in the CNS [47,48], and increased

expression of Vmat2 increases NAc dopaminergic storage capacity

[49]. The G protein subunits, Go2 and Gao2, are involved in the

negative regulation of VMAT2 activity [50], whereas the MCH-

MCH1R system signals via Gi/o [38,51,52,53,54]. Synapsin 1

controls the fraction of synaptic vesicles available for release [55],

and elevated Syn1 expression can thereby increase the efficiency of

dopamine release observed in pmch2/2 rats in this study.

Therefore, our data suggest that loss of the negative modulation

of MCH-mediated signaling via Gi/o might affect vesicle dynamics

in the presynaptic terminal.

Finally, we investigated if these presynaptic adaptations result in

elevated extracellular dopamine levels in vivo. However, basal in

vivo extracellular AcbSh dopamine levels measured using classical

microdialysis in fasting rats did not differ between genotypes

(Fig. 6D).

Figure 5. Acute AcbSh administration of MCH elevates home-cage feeding behavior in pmch2/2 rats towards wild-type levels. (A)
Food intake (expressed in kcal) measured 1, 2.5, and 4 hr after aCSF or MCH administration (1 mg/side) in the AcbSh of pmch+/+ and pmch2/2 rats at
the beginning of the dark phase. (B) Food intake measured 1, 2.5, and 4 hr after aCSF administration or co-administration of NEI and NGE (1 mg each/
side) in the AcbSh of pmch+/+ and pmch2/2 rats at the beginning of the dark phase (n = 6–8 per group). *P,0.05, **P,0.005, Student’s t-test. Data are
shown as mean 6 S.E.M.
doi:10.1371/journal.pone.0019600.g005
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Discussion

Results from the present study confirm an important role for

MCH-mediated signaling in the positive control of appetitive

behavior. Chronic loss of Pmch changed meal structure dynamics

during rat development and adulthood, and decreased HF food-

reinforced operant responding in adult rats. In addition, chronic

ICV administration of NEI or acute co-administration of NEI and

NGE in the AcbSh of pmch2/2 rats did not affect body weight

regulation, whereas acute administration of MCH in the AcbSh of

pmch2/2 rats elevated home-cage food intake towards wild-type

levels. Finally, using biochemical and molecular assays we show

that chronic loss of Pmch affects striatal dopamine system

dynamics.

A robust reduction in meal size in pmch2/2 rats during

development and adulthood appears consistent with the finding

that pharmacological blockade of MCH1R in wild-type DIO-rats

decreased home-cage meal size but not meal frequency [56].

Moreover, the study by Kowalski et al. suggests that a reduced

meal size is a direct effect of absent MCH-mediated signaling,

resulting in the hypophagia observed in pmch2/2 rats (this study

and [8]) or after acute MCH1R-blockade in wild-type DIO rats

[56]. However, loss of Pmch in the rat also affects energy

expenditure [8]. Thus, a more detailed longitudinal metabolic

analysis is necessary to identify additional parameters that might

be responsible for changed body weight dynamics during chronic

loss of Pmch in the rat.

MCH immunoreactive fibers innervate nucleus of the solitary

tract (NTS) regions [57]. Therefore, Pmch-deficiency potentially

removes the inhibitory effect of MCH on glutamate transmission

between primary vagal afferents and NTS neurons [58],

decreasing meal size and caloric intake. However, 4th ventricle

MCH injections had no effect on caloric intake [58]. Thus, it is

unlikely that a reduced meal size results from a lack of MCH

signaling at the level of the brainstem. However, we cannot

exclude that satiety factors integrated outside the brain stem are

affected in our rat model. This leaves the arcuate nucleus,

paraventricular nucleus, dorsomedial nucleus, and the AcbSh as

primary effecter sites of MCH function [15,21,58,59]. Finally,

changes in ‘natural’ and ‘unnatural’ reward-related neurochem-

istry and behavior observed here and in other studies

[21,28,29,30,31], and the intensive crosstalk between hypotha-

Figure 6. Striatal dopamine system dynamics in pmch2/2 rats. (A) Electrically evoked control dopamine release is similar between genotypes
in the CPu, but is increased in the NAc of pmch2/2 rats compared to pmch+/+ rats. Electrically evoked dopamine release in both the CPu and NAc of
pmch2/2 rats is increased compared to pmch+/+ rats after treatment with GBR12909, a highly specific dopamine transporter (DAT) inhibitor. Data is
shown in comparison to wild-type control release as 100% (dotted line; *P,0.005, Students’ t-test; n = 4 per group). (B) DAT expression is increased in
the CPu, AcbCo, and the AcbSh of pmch2/2 rats compared to pmch+/+ rats. Brain areas are indicated on an atlas section from Paxinos and Watson [72]
(*P,0.05, Students’ t-test; n = 8–11 per group). (C) Relative gene expression of a subset of genes involved in dopaminergic storage capacity and
dopamine signaling in the NAc of adult pmch+/+ and pmch2/2 rats revealed an increased trend of Vmat2 and Syn1 in pmch2/2 rats compared to
pmch+/+ rats (P = 0.067 and P = 0.069 by Students’ t-test, respectively; n = 8–9 per group). (D) Average basal extracellular AcbSh dopamine levels did
not differ between fasting pmch+/+ and pmch2/2 rats (n = 7 per group). Data are shown as mean 6 S.E.M.
doi:10.1371/journal.pone.0019600.g006
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lamic and striatal brain regions indicate that the AcbSh is a likely

converging site to exert the orexigenic action of MCH.

As overeating of palatable foods is driven by hedonic factors, the

blunted overeating in pmch2/2 rats as compared to pmch+/+ rats

when newly presented with an HF diet suggest a dysregulated

mesolimbic regulation of feeding behavior. In addition, no

difference in hypophagia was observed when rats were switched

from an HF diet to a SHP diet, indicating that a potential

mesolimbic functional dysregulation in pmch2/2 rats is only

observed under acute reward stimulatory conditions. Pmch2/2

mice, bred on a C57BL6 background, demonstrated no acute

overfeeding during a similar paradigm but, surprisingly, also

displayed no hypophagia when fed ad libitum [29].

Pmch2/2 rats showed decreased HF food-reinforced operant

responding during FR1 sessions. Our observations align with

recent findings that acute MCH1R-blockade reduces HF food-

reinforced operant responding, supporting the hypothesis that

MCH1R-antagonism accelerates satiety mechanisms after the

initiation of food intake, as speculated by Nair et al. [27].

Moreover, changes in satiety mechanisms do not appear to be

short-term as for instance with Cholecystokinin, which acts within

15 minutes [60], but it seems to be a more gradual effect. This

notion is supported by our observations that loss of Pmch had no

clear effect on pellet intake during the first 30 minutes of self-

administration during FR1 sessions or on food intake during the

first 2.5 hours of the dark phase of ad libitum-fed aCSF-treated

pmch+/+ and pmch2/2 rats in the AcbSh infusion experiment. In

sum, our data suggest that MCH-mediated signaling is not crucial

for the initiation of feeding, but it rather amplifies food intake or

decreases satiety after the initiation of feeding.

Pmch2/2 rats demonstrated decreased breakpoint values during

PR sessions. The breakpoint value can be seen as a measure for

the rewarding value of the reinforcer [61], and breakpoints were

found to decrease with decreasing nutritional value of a food

reward whereas they increase during food deprivation [61,62].

This indicates that 45% HF pellets have a decreased rewarding

value in pmch2/2 rats. Finally, chronic loss of Pmch did not robustly

affect cue-, pellet-, or yohimbine-induced reinstatement of food

seeking. These findings complement recent observations that acute

blockade of MCH1R-mediated signaling plays a minimal role in

pellet-priming, cue-, or yohimbine-induced reinstatement [27].

Pmch encodes for NGE, NEI, and MCH [4], and our rat model

lacks all three neuropeptides [8]. Here we show that chronic ICV

administration of NEI had no effect on body weight regulation in

either pmch+/+ or pmch2/2 rats. This observation strengthens

earlier findings that acute ICV NEI administration did not affect

food intake in wild-type rats, nor did it affect the orexigenic effect

of ICV MCH administration [11]. Furthermore, acute co-

administration of 1 mg NEI and 1 mg NGE in the AcbSh of

pmch+/+ and pmch2/2 rats also did not affect home-cage feeding

behavior. In sum, our results indicate that loss of either NEI- or

NGE-mediated signaling does not contribute to the aberrant

feeding behavior in pmch2/2 rats, implicating an important role for

MCH.

Acute administration of MCH or a MCH-analog to the AcbSh

of wild-type rats increased food intake [15,21], suggesting that

administration of MCH to the AcbSh of pmch2/2 rats could

elevate food intake towards wild-type levels. First, acute AcbSh

administration of 1 mg MCH elevated, albeit not significantly, food

intake in wild-type rats. Furthermore, we show that acute

administration of 1 mg MCH to the AcbSh of pmch2/2 rats

indeed elevated home-cage feeding behavior towards wild-type

levels. These observations indicate that administration of 1 mg

MCH in the AcbSh of pmch2/2 rats is sufficient to temporarily

elevate food intake towards wild-type levels. Finally, it confirms the

important role for the AcbSh in MCH-mediated control of feeding

behavior.

Several studies have shown that loss of MCH-mediated

signaling affects striatal dopamine system dynamics

[28,29,30,31]. Although a direct correlation between dysregulated

striatal dopamine function and hypophagia after loss of MCH-

mediated signaling has not yet been demonstrated, it is tempting to

speculate that there is a link between the two observations. Here

we observed that chronic loss of Pmch in the rat resulted in

increased presynaptic dopaminergic release capacity, increased

DAT levels in the NAc of pmch2/2 rats, and an increased trend in

NAc gene expression of Syn1 and Vmat2. Finally, basal extracel-

lular AcbSh dopamine levels were not changed in fasting rats,

indicating that under non-stimulated conditions, pmch2/2 rats do

not appear to have an increased dopamine tone. However, in our

set-up, increased AcbSh DAT levels might potentially mask an

increased dopamine tone. Although our data clearly indicate that

the striatal dopamine system is affected in the rat after chronic loss

of Pmch, the physiological relevance of these changes remain to be

studied in more detail.

Pmch2/2 rats are hypophagic [8], but the exact mechanism

behind the hypophagia is still unknown. Recently it has been

shown that MCH administration to the AcbSh of rats affects the

phosphorylation state of GluR1ser845, reduces surface expression of

GluR1-containing AMPA receptors (AMPARs), decreases ampli-

tude of AMPAR-mediated synaptic events, suppresses action

potential firing MSNs through K+-channel activation, and reduces

neuronal cell firing in freely moving rats [21,38]. Therefore, it is

possible that loss of MCH-mediated signaling affects striatal

glutamatergic signaling and dopamine function, but that the latter

effect is not causal to the observed hypophagia in Pmch-deficient

rodents. However, this has to be studied in more detail. Moreover,

in addition to the direct effects on AcbSh neuronal excitability,

MCH might also indirectly influence neuronal excitability of other

brain areas, such as the medial ventral pallidum and the ventral

tegmental area, via its effects on the AcbSh [38,39]. Finally, loss of

MCH-mediated signaling in brain areas such as the paraven-

tricular nucleus and dorsomedial nucleus can also contribute to the

phenotypes observed in this study, and therefore also remain to be

studied in more detail.

An alternative to the conclusion that chronic loss of Pmch

directly influences motivational aspects of feeding is that Pmch

deletion could result in a defect in hypothalamic brain develop-

ment resulting in hypophagia and a changed metabolic rate. This

argument is formally difficult to exclude; however, no gross

neuroanatomical defects were observed in brain sections from rats

lacking Pmch. Furthermore, direct evidence for a pharmacological

etiology is provided by the modulation of feeding behavior by

acute or chronic administration of MCH, MCH-analogues, or

MCH1R-antagonists, as described above.

MCH-mediated signaling between the LHA and the NAc has

been implicated in communicating the hedonic, or rewarding

aspects of feeding [63]. We here show that chronic loss of Pmch

affects motivational aspects to obtain food and thus provides a

crucial signal with which hypothalamic neural circuits controlling

energy balance guide frontal brain areas to shift motivation

towards food. Without MCH-mediated signaling, motivation away

from food appears to prevail. In addition, others and we show that

chronic loss of MCH-mediated signaling affects striatal dopamine

function [28,29,30,31], an ability that is shared by other LHA

factors [64,65]. Incorrect control of food intake is one of the

hallmarks for developing or maintaining obesity. Therefore, the

development of an anti-obesity treatment based on central
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MCH1R-antagonism could potentially be a way to reverse obesity

by changing the motivational aspects of feeding behavior.

Materials and Methods

Ethics statement
The Animal Care Committees of the Royal Netherlands

Academy of Arts and Sciences, the University Medical Center

Utrecht, and the Free University of Amsterdam approved all

animal procedures according to Dutch legal ethical guidelines.

Animals
Pmch+/+ and pmch2/2 rats, on a Wistar background [8], were

socially housed (2 per cage) unless noted otherwise in a temperature-

and humidity-controlled room (2162uC and 60% relative humid-

ity) under a 12 hr light-dark cycle (lights on at 6 AM). Standard diet

(semi-high protein [SHP]: RM3, 27% protein, 12% fat, 62%

carbohydrate, 3.33 kcal/g AFE, SDS, Witham, United Kingdom)

and water was available ad libitum unless noted otherwise. Rats used

for the self-administration experiments were housed under a

reversed 12 hr light-dark cycle with standard diet (lights on at 6

PM; Teklan Global 2016, 22% protein, 12% fat, 66% carbohy-

drate, 3.0 kcal/g AFE, Harlan, Horst, The Netherlands) and water

available ad libitum. Rats used in the AcbSh infusion experiments

were on a 12 hr light-dark cycle (lights on at 5 AM) and also fed

Teklan Global 2016. Only male rats were used in the present study.

Genotyping
Rats were genotyped using the KASPar SNP Genotyping

System (KBiosciences, Hoddesdon, UK) as described before [8].

Rats were genotyped around postnatal day (PND) 21, and

genotypes were reconfirmed after experimental procedures were

completed.

Meal structure analysis
Rats were placed individually into monitoring cages, and allowed

to acclimatize for 2 days. Body weight, food and water intake were

measured daily. Water and SHP diet were available ad libitum. Meal

structures were determined from 2 consecutive days during each

experimental time point using data collected by Scales (Department

Biomedical Engineering, UMC Utrecht, the Netherlands). This

program records the weight of food hoppers in the home cage

automatically every 12 seconds, as well as the amount of licks from

water bottles. A meal was defined as an episode of food intake with a

minimal consumption of 1 kilocalorie (0.3 g of chow). Two

consecutive meals were separated by a minimal interval of 5

minutes [66,67]. Data analysis using a longer minimal interval did

not result in appreciable changes of the results. Parameters (food

intake, total meal duration, average meal duration, meal frequency,

average intermeal interval, average meal size, rate of eating, and

satiety ratio) were measured at PNDs 40, 58, 70, 84, and 98. If not in

the monitoring cages, rats were housed together (2 per cage) in their

home cage. The intermeal interval was defined as the interval

between the last response of a meal to the first response of the next

meal. Rates of eating were calculated by dividing each meal size by

its respective duration. Finally, the satiety ratio, an index of the non-

eating time (i.e., satiety) produced by each gram of food consumed,

was calculated as the average intermeal interval divided by the

average meal size [68].

Acute hyperphagia assay
Adult rats ($12 weeks old) were housed individually and after 3

days of acclimatizing, food intake was measured for 5 consecutive

days. On day 6, rats received high-fat (HF) diet (45%-AFE, 20%kcal

protein, 45%kcal fat, 35%kcal carbohydrates, 4.54 kcal/g AFE,

SDS, Witham, United Kingdom) for 4 consecutive days. To

measure acute hypophagia, rats were grown up on HF diet after

weaning, and were newly presented with standard SHP diet at an

adult age ($12 weeks old) with the same set-up as described above.

Drugs
Yohimbine-HCl (Sigma-Aldrich, Zwijndrecht, The Nether-

lands) was dissolved in sterile saline solution (NaCl, 0.9%).

MCH (Bachem), NEI (Bachem), and NGE (Bachem) were

dissolved in artificial CSF (aCSF) immediately before use.

Food self-administration
The food self-administration experiments were conducted in

standard, ventilated, and sound-attenuating operant conditioning

test chambers (Med Associates Inc.). The chambers were fitted

with a dim red house light and two small levers separated 15 cm

from each other. Water was available ad libitum. A pellet receptacle

was placed in between the levers. One lever was designated as

‘active’; lever pressing on this lever resulted in the delivery of one

45 mg pellet containing 45% fat and 34% carbohydrate (F05879,

5.85 kcal/g AFE; Bioserv, San Diego, CA). At the same time a cue

light above the active lever was turned on for 5 sec and 6 sound

clicks were produced during 3 sec (compound cue). Lever presses

on the inactive lever were monitored, but were without

consequences. A 15 sec time-out period immediately followed

each pellet delivery during which lever pressing was without

consequences. A computer interfaced to the chambers was used

for equipment operation and data collection. Med PC IV software

(Med Associates Inc.) was used to analyze data.

Acquisition (FR1) and progressive ratio (PR) schedules
Adult ($12 weeks old) pmch+/+ rats weighing between 330–

350 g and pmch2/2 rats weighing between 280–300 g at the

beginning of the experiment were used. Home-cage food intake

was measured during 4 days before the start of the experiment,

and all rats received approximately 80% of their regular food

intake during the self-administration paradigm. Body weight and

food intake were measured daily during the course of the study.

Acquisition phase sessions (3 hr duration, with cues: cue light on

for 5 sec, 6 sound clicks during 3 sec) commenced after 7 days of

acclimation to the animal facility and were performed between 10

AM and 1 PM. Rats were allowed to self-administer pellets during

12 daily sessions on an intermittent (1 day) fixed ratio 1 (FR1)

schedule of reinforcement. After the FR1 schedule, rats were

allowed to self-administer pellets on a progressive ratio (PR)

schedule during 4 intermittent (1 day) sessions (3 hr duration, with

cues: cue light on for 5 sec, 6 sound clicks during 3 sec). The

successive increase in number of lever presses required to obtain a

pellet delivery was calculated by the following equation: Response

ratio = (5e(0.2*reward number))25, rounded to the nearest integer [44].

This equation produced the following sequence of required lever

presses: 1, 2, 4, 6, 9, 12, 15, 20, 35, 40, 50, 62, 77 etcetera. The

final ratio attained was defined as the animal’s breakpoint.

Extinction phases and reinstatement
After the PR sessions, rats were allowed to self-administer pellets

at an FR1 schedule for 4 intermittent (1 day) sessions (3 hr

duration, with cues: cue light on for 5 sec, 6 sound clicks during 3

sec). Rats then entered an extinction phase of 22 consecutive daily

sessions (1 hr duration, no reward, no cues). After all rats showed

stable extinction values (,10 active responses, 5 consecutive

sessions), rats were tested for cue-induced relapse (1 hr duration,
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no reward, 1 cue series at start of session and the ability to respond

for the compound cue on an FR1 schedule). Rats then entered an

extinction phase of 9 consecutive daily sessions during which

responding for the cues was extinguished (1 hr duration, no

reward, with cues). After all rats showed stable extinction values

(,10 active responses, 5 consecutive sessions) rats were tested for

pellet-induced relapse (1 hr duration, no reward, 1 pellet at start of

session, with cues). Following 14 additional extinction sessions rats

were tested for yohimbine-induced relapse (1 hr duration, no

reward, yohimbine [2 mg/kg, 1 ml/kg, intraperitoneal, 30 min

prior to start of session], with cues). Yohimbine is an a2-adrenergic

receptor antagonist that induces stress-like responses [69].

Chronic intracerebroventricular NEI administration
Body weight, food-, and water intake of individually housed rats

were measured for 8 days (PNDs 86–94). At PND 94, rats were

anesthetized with isoflurane, and received one dose of Temgesic

(0.05 mg/kg subcutaneous; Schering-Plough, Utrecht, the Nether-

lands). Average body weight at PND 94 was 400 g for pmch+/+ rats

and 323 g for pmch2/2 rats. A sterile brain infusion cannula (28-

gauge; Brain infusion kit 1; Alzet, Palo Alto, CA) was stereotaxically

implanted into the left third ventricle. When a flat skull position was

used, the stereotaxic coordinates were 0.9 mm caudal to the

bregma, 1.5 mm lateral to the midline, and 3.5 mm (pmch+/+ rats) or

3.0 mm (pmch2/2 rats) from the surface of the skull. The cannulae

were fixed to the skull with dental cement. The infusion cannula was

connected to an osmotic minipump (Pump model 2002, Alzet, Palo

Alto, CA) that was filled with aCSF. The osmotic pumps were

placed under the dorsal skin of the neck and connected to the ICV

cannula using plastic tubing (length 9 cm; i.d. 0.69 mm; o.d.

1.14 mm). At the start of the study each cannula was filled with

aCSF. After distribution into matched experimental and control

groups, pmch+/+ rats and pmch2/2 rats received a minipump filled

with either aCSF (0.5 ml/hr) or NEI (dissolved in aCSF; 8 mg/rat/

day). Body weight, food-, and water intake were then recorded every

two days for 13 days. After 13 days, at PND 107, all rats received a

new mini pump under isoflurane anesthesia. Subsequently, body

weight, food-, and water intake were recorded every two days for

another 13 days. At the end of all experiments, the animals were

sacrificed and the position of the ventricular cannula assessed

following the injection of 150 ml of Evans blue dye (2 mg/ml) and

visual examination of brain slices. Only parameters recorded from

animals with correctly positioned cannulae were included in the

results. Body weight at PND 94 was set as 100%. Average food and

water intake was calculated for PNDs 86–93 (basal week), PNDs

100–106 (week 2), or PNDs 114–120 (week 4).

AcbSh surgery
Adult pmch+/+ and pmch2/2 rats ($15 weeks old) received a

guide cannula (Plastics One) in the AcbSh bilaterally, as described

before [21]. After surgery, the rats were allowed to recover for 7

days, followed by daily manipulation and habituation to the

injection procedure for 3 days.

AcbSh microinjection procedure
AcbSh microinjection procedure was performed as described

before [21]. Tubing was coated with 2% BSA solution to minimize

loss of MCH to the tubing. Reagent was resuspended in aCSF

immediately before use.

AcbSh feeding behavior assay
On a test day, food was removed at 4 PM, and the rats were

allowed to remain in their home cage until the drug or vehicle

control was injected into the AcbSh using a full Latin square

design (aCSF, 1 mg MCH per side, or 1 mg NEI and 1 mg NGE

per side). After the injection, the rats were returned to their home

cage, and 1 hr later they were allowed full access to their chow.

The experiment started at the beginning of the dark cycle (5 PM),

and food and water intake were measured for 1, 2.5, 4, and 22 hr

after the start of the dark cycle. Each test session was separated by

3 days. No evidence of order or carryover was observed in the

Latin square design.

AcbSh histology
At the end of the experiment, rats were given an overdose of

sodium-pentobarbital (200 mg/kg, intraperitoneal) and were

intracardially perfused with 60 ml 4% paraformaldehyde solution.

Vibratome sections (35 mm) were cut to determine the correct

location of the guide cannulae. Only data from rats with two

correctly placed cannulae were included.

Neurochemical analysis
Adult rats ($12 weeks old) were decapitated and the caudate

putamen (CPu) and nucleus accumbens (NAc) were rapidly

dissected from the coronal brain slices. Samples (0.36
0.362 mm) were prepared using a McIlwain tissue chopper,

incubated and superfused essentially as described before [70].

Samples were washed twice with Krebs-Ringer bicarbonate

medium (in mM; NaCl, 121; KCL, 1.87; KH2PO4, 1.17;

MgSO4, 1.17; NaHCO3, 25; CaCl2, 1.22 and D2(+)-glucose,

10), followed by preincubation for 15 min in this medium in a

constant atmosphere of 95% O2-5% CO2 at 37uC. After

preincubation, the samples were washed rapidly with the Krebs-

Ringer and incubated for 15 min in 2.5 mL of this medium

containing 5 mCi [3H]dopamine in an atmosphere of 95% O2-

5% CO2 at 37uC with or without 6 mM GBR-12909 (dopamine

reuptake inhibitor; Sigma-Aldrich, Zwijndrecht, the Nether-

lands). As the CPu and the NAc have a dense noradrenergic

innervation, 3.6 mM desipramine (3-isobutyl-1-methyl-xantine

[DMI]; Sigma, St. Louis, MO, USA) was added to the medium

of these brain structures to prevent accumulation of [3H]dopa-

mine in noradrenergic nerve terminals. After labeling, the

samples were washed rapidly and transferred to a chamber of

the superfusion apparatus (approximately 4 mg tissue in 0.2 mL

volume) and superfused (0.2 mL/min) with medium gassed with

95% O2-5% CO2 at 37uC. In each observation, neurotrans-

mitter release from samples of pmch+/+ and pmch2/2 rats was

studied simultaneously. After 40 min of superfusion (t = 40 min),

the superfusate was collected as 10-min samples. Neurotrans-

mitter release was induced by exposing the samples to electrical

biphasic block-pulses (1 Hz, 4 ms at 30 mA) for 10 min at

t = 50. The radioactivity remaining at the end of the experiment

was extracted from the tissue with 0.1N HCl. The radioactivity

in superfusion fractions and tissue extracts was determined by

liquid scintillation counting. The efflux of radioactivity during

each collection was expressed as a percentage of the amount of

radioactivity in the slices at the beginning of the respective

collection period. The electrically evoked release of neurotrans-

mitter was calculated by subtracting the spontaneous efflux of

radioactivity from the total overflow of radioactivity during

stimulation and the next 10 min. A linear decline from the 10-

min interval before to that 20–30 min after the start of

stimulation was assumed for calculation of the spontaneous

efflux of radioactivity. The evoked release was expressed as

percentage of the content of radioactivity of the samples at the

start of the stimulation period.

MCH, Motivation, and Feeding

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e19600



Autoradiographic DAT assay
Cryostatic coronal sections (10 mm) through mid-striatum

from adult rats ($12 weeks old) were preincubated (20 min,

20uC) in 50 mM Tris-HCl 120 mM NaCl (pH 7.4), then 1 hr in

fresh buffer containing 10 pM RTI-55 (2200 Ci/mmol; Perkin

Elmer) and 1 mM Citalopram and Nisoxetine (Sigma-Aldrich,

Zwijndrecht, the Netherlands), with nonspecific binding defined

with 100 mM GBR-12909 (Sigma-Aldrich, Zwijndrecht, the

Netherlands). Slides were washed twice for 10 min in fresh

buffer (4uC), dipped in ice-cold deionised water, airflow dried,

exposed to tritium-sensitive film for 5 days with tritium

standards, photodeveloped, and analyzed using NIH freeware

ImageJ.

NAc mRNA expression
Adult rats ($12 weeks old) were sacrificed during the early

afternoon. The NAc was rapidly dissected and snap-frozen in

liquid nitrogen. Total RNA was isolated using a Trizol method

and RNA quantity and quality was assessed using a Nanodrop

ND-1000 spectrophotometer (Thermo-Scientific, Wilmington,

DE, USA). cDNA was synthesized from 1 mg of total RNA using

a RetroScript kit (Applied Biosystems, Nieuwerkerk a/d IJssel, NL)

as described by the manufacturer, and diluted in MQ (1:2 for Th

and Vmat2; 1:8 for all other genes). Gene expression was quantified

with a 7900 HT Real-Time PCR machine (ABI Prism). Primers

for Cyclophilin, Drd1a, Drd2, GluR1, DARPP32, Th, Vmat2, Syn1, and

Htr2c were designed using SciTools PrimerQuest (IDT; primers

shown in Table S2). Primers were optimized to amplify cDNA but

not genomic DNA and to generate a single PCR product. PCR

efficiency was between 80% and 120%. In general, 2 ml template,

10 mM primers, and 5 ml SYBRGreen Mix (Applied Biosystems)

was used in a 10 ml PCR reaction. Thermocycler conditions

comprised an initial holding stage at 50uC for 2 min followed by

95uC for 3 min followed by a PCR program consisting of 95uC for

30 sec and 60uC for 30 sec for 40 cycles. Samples were run in

triplicates. To control for input, Cyclophilin was run on the same

plate and used as a control gene. Calculations were performed by

a comparative method (2.02DDCt), taking the efficiency of the PCR

into account (1.8–2.2). All experiments were repeated twice after a

new cDNA synthesis reaction. Average pmch2/2 rat gene

expression from the three experiments is expressed as a percentage

of average pmch+/+ gene expression.

AcbSh microdialysis surgery
Rats were anesthetized using isoflurane (2.5%, 400 ml/min

N2O, 600 ml/min O2). Lidocaine (10% m/v) was used for local

anesthesia. The animals were fixed in a stereotaxic frame and

unilaterally implanted with a stainless steel guide cannula (8 mm)

aimed at the right AcbSh according to previously described

procedures [49,71]. The following coordinates were used:

anteroposterior +10.2 mm; lateral 20.8 mm; dorsoventral

26.0 mm [72]. The anteroposterior coordinate is relative to the

interaural line; the lateral coordinate is relative to the midline

suture and the dorsoventral coordinate is relative to the skull

surface. The cannula was fixed onto the skull and anchored with

dental cement and stainless steel screws. The guide cannula

contained an inner cannula to prevent infections and occlusions.

The rats were allowed to recover from surgery for at least 7 days in

Plexiglas microdialysis cages (25625635 cm) for the rest of the

experiment. On 3 consecutive days, prior to the start of the

microdialysis experiment, each rat was gently picked up and lifted

above the top of the home cage in order to habituate them to

handling.

Microdialysis procedure
A detailed description of the microdialysis procedure has been

published elsewhere [49]. In short, a dialysis probe (type A-I-8-02,

outer diameter: 0.22 mm, 50,000 molecular-weight cut-off) was

carefully inserted into the guide cannula. The probe was secured

to the guide cannula using a screw. The tip of the dialysis probe

protruded 2 mm below the distal end of the guide cannula. The

probes had an in vitro recovery of 10–12% for dopamine. The inlet

and outlet of the probe were connected to a swivel that allowed the

rat to move freely inside the microdialysis cage. The dialysis probe

was perfused at a rate of 2.0 ml/min with Modified Ringer solution

(147 mM NaCl, 4 mM KCl, 1.1 mM CaCl2.2H2O and 1.1 mM

MgCl2.6H2O, dissolved in ultra pure water, pH 7.4). The outflow

was collected every 15 min in a tube containing 8 ml of 0.02 M

formic acid and kept at 280uC until analyzed. The samples were

manually injected into a high performance liquid chromatography

(HPLC) system. Dopamine was separated from the remaining

neurotransmitters by means of reversed phase, ion-paring liquid

chromatography using an Eicompak PP-ODS column (particle

size: 2 mm, 4.6 mm630mm) in combination with a mobile phase

(0.1 M phosphate buffer [NaH2PO4.2H2O : Na2HPO4.12H2O,

ratio 25:4], 2.0 mM sodium 1-decanesulphonate and 0.1 mM di-

sodium EDTA, dissolved in ultra pure water [.18 MV], pH 6.0)

containing 1% of methanol. The flow rate was 500 ml/min and the

system temperature was 25uC. The concentration of dopamine

was measured using electrochemical detection. The working

electrode was set at +400 mV against a silver/silver-chloride

reference electrode. The accuracy of measurement was within

1.3% and the detection limit was about 30fg per sample. The

system was calibrated using a standard dopamine solution before

each measurement. On the experimental day, food was removed 1

hr before start of the experiment and during the remainder of the

experiment. A stable baseline level of dopamine (610%) was

reached at 4 hr after insertion of the probe [49,71], followed by the

collection of 3 basal samples. Average basal dopamine levels are

expressed as pg dopamine in a 15 min dialysate sample.

Microdialysis histology
At the end of the experiment, rats were given an overdose of

sodium-pentobarbital (250 mg/kg, intraperitoneal) and were

intracardially perfused with 60 ml 4% paraformaldehyde solution.

Vibratome sections (35 mm) were cut to determine the correct

location of the microdialysis probe.

Data analysis
All data are expressed as mean 6 S.E.M. Meal pattern

characteristics (Figures 1A-I) were analyzed by repeated-measures

ANOVA that included the between-subject factor of genotype and the

within-subjects factor of time. If an effect was observed, the ANOVA

was followed by an unpaired Students’ t-test analysis. In addition,

figs. 1B-G were also analyzed by an ANCOVA at each

experimental time point with body weight as covariate. As we were

interested in a parameter that only showed a genotype effect at PND

40, repeated measured ANCOVAs could not be used for this

analysis. Acute hyperphagia and hypophagia (Figs. 2A and B) were

analyzed by repeated-measures ANOVA with a special contrast to

investigate if the intake on the test day (HF day1 or SHP day1) was

different from the average intake of 5 preceding days (SHP days1–5

or HF days1–5). Elements of high-fat food-reinforced responding

(Figs. 3B-H) were analyzed by repeated-measures ANOVA. If an

effect was observed, the ANOVA was followed by an unpaired

Students’ t-test analysis. Body weight and food intake during chronic

aCSF or NEI administration were analyzed by repeated-measures

ANOVA with genotype and treatment as between-subject factors and

MCH, Motivation, and Feeding

PLoS ONE | www.plosone.org 11 May 2011 | Volume 6 | Issue 5 | e19600



the within-subjects factor of time, with a Bonferroni post-hoc

correction for multiple comparisons. For the AcbSh infusions we

used a mixed experimental design that included the between-subject

factors of genotype and treatment and the within-subjects factor of time,

with a Bonferroni post-hoc correction for multiple comparisons.

Within time-point data were analyzed using an unpaired Students’

t-test. The effect of GBR12909 on dopamine release was analyzed

using a 2-way ANOVA with between-subject factors of genotype and

treatment. All other data were analyzed using an unpaired Students’ t-

test. All data were analyzed using a commercially available statistical

program (SPSS for Macintosh, version 16.0). The null hypothesis

was rejected at the 0.05 level.

Supporting Information

Table S1 Statistical results for the meal structure
analysis.

(TIF)

Table S2 Gene name, gene ID, and forward and reverse
primer sequences for qPCR analysis of NAc gene
expression.
(TIF)
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